Steady regimes of a Savonius rotor-based wind power generator with voltage stabilizer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A small-scale wind power generator is studied, where the operating element is a Savonius rotor. The electric circuit of the generator comprises a voltage stabilizer and a load resistance. Based on phenomenological considerations, a mathematical model of this electro-mechanical system is constructed. In the result of analytical study of this model, it is shown that the hysteresis phenomenon occurs in this system under certain conditions imposed on parameters. It should be noted that this hysteresis is due to the presence of the voltage stabilizer. A series of experiments is performed. Based on the obtained experimental data, parameters of the proposed model are identified. Results of experiments are in good agreement with results of the analytical study. An algorithm of regulation of the load resistance is proposed aimed at reaching the maximum output power.

Full Text

Restricted Access

About the authors

V. M. Budanov

Institute of Mechanics of Lomonosov Moscow State University

Email: seliutski@imec.msu.ru
Russian Federation, Moscow

A. P. Holub

Institute of Mechanics of Lomonosov Moscow State University

Email: seliutski@imec.msu.ru
Russian Federation, Moscow

M. Z. Dosaev

Institute of Mechanics of Lomonosov Moscow State University

Email: seliutski@imec.msu.ru
Russian Federation, Moscow

K. V. Klimov

Institute of Mechanics of Lomonosov Moscow State University

Email: seliutski@imec.msu.ru
Russian Federation, Moscow

Y. D. Selyutskiy

Institute of Mechanics of Lomonosov Moscow State University

Author for correspondence.
Email: seliutski@imec.msu.ru
Russian Federation, Moscow

References

  1. Wang H., Xiong B., Zhang Z., Zhang H., Azam A. Small Wind Turbines and Their Potential for Internet of Things Applications // iScience. 2023. V. 26. № 9. P. 107674. https://doi.org/:10.1016/j.isci.2023.107674.
  2. Al-Kayiem H.H., Bhayo B.A., Assadi M. Comparative Critique on the Design Parameters and Their Effect on the Performance of S-Rotors // Renewable Energy. 2016. V. 99. P. 1306–1317. https://doi.org/:10.1016/j.renene.2016.07.015.
  3. Cuevas-Carvajal N., Cortes-Ramirez J.S., Norato J.A., Hernandez C., Montoya-Vallejo M.F. Effect of Geometrical Parameters on the Performance of Conventional Savonius VAWT: A Review // Renewable & Sustainable Energy Reviews. 2022. V. 161. № 3. P. 112314.
  4. Sheldahl R.E., Blackwell B.F., Feltzt L.V. Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors // J. Energy. 1978. V. 2. № 3. P. 160–164.
  5. Saha U.K., Thotla S., Maity D. Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments // J. Wind Eng. Ind. Aerodyn. 2008. V. 96. P. 1359–1375. https://doi.org/:10.1016/j.jweia.2008.03.005.
  6. Fujisawa N. On the Torque Mechanism of Savonius Rotors // J. Wind Eng. & Ind. Aerodyn. 1992. V. 40. P. 277–292.
  7. Jian C., Kumbernuss J., Linhua Z., Lin L., Hongxing Y. Influence of Phase-Shift and Overlap Ratio on Savonius Wind Turbine’s Performance // ASME. J. Sol. Energy Eng. 2012. V. 134. № 1. P. 011016. https://doi.org/:10.1115/1.4004980.
  8. Nasef M.H., El-Askary W.A., Abdel-Hamid A.A., Gad H.E. Evaluation of Savonius Rotor Performance: Static and Dynamic Studies // J. Wind Eng. & Ind. Aerodyn. 2013. V. 123. P. 1–11. https://doi.org/:10.1016/j.jweia.2013.09.009.
  9. Bach G. Untersuchungen über Savonius-Rotoren und Verwandte Strömungsmaschinen // Forschung auf dem Gebiete des Ingenieurwesens. 1931. Bd. 2. S. 218–231.
  10. Kamoji M.A., Kedare S.B., Prabhu S.V. Experimental Investigations on single Stage, Two Stage and Three Stage Conventional Savonius Rotor // Intern. J. Energy Res. 2008. V. 32. P. 877–895. https://doi.org/:10.1002/er.1399.
  11. Frikha S., Driss Z., Ayadi E., Masmoudi Z., Abid M.S. Numerical and Experimental Characterization of Multi-Stage Savonius Rotors // Energy. 2016. V. 114. P. 382–404. https://doi.org/:10.1016/j.energy.2016.08.017.
  12. Kacprzak K., Liskiewicz G., Sobczak K. Numerical Investigation of Conventional and Modified Savonius Wind Turbines // Renewable Energy. 2013. V. 60. P. 578–585. https://doi.org/:10.1016/j.renene.2013.06.009.
  13. Roy S., Saha U.K. Wind Tunnel Experiments of a Newly Developed Two Bladed Savonius-Style Wind Turbine // Applied Energy. 2015. V. 137. P. 117–125. https://doi.org/:10.1016/j.apenergy.2014.10.022.
  14. Roy S., Ducoin A. Unsteady Analysis on the Instantaneous Forces and Moment Arms Acting on a Novel Savonius-Style Wind Turbine // Energy Conversion & Management. 2016. V. 121. P. 281–296. https://doi.org/:10.1016/j.enconman.2016.05.044.
  15. Scheaua F.D. Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type // Energies. 2020. V. 13. P. 2311. https://doi.org/:10.3390/en13092311.
  16. Rizk M., Nasr K. Computational Fluid Dynamics Investigations Over Conventional and Modified Savonius Wind Turbines // Heliyon. 2023. V.9. № 6. P. 16876. https://doi.org/:10.1016/j.heliyon.2023.e16876.
  17. Mohamed M.H., Janiga G., Pap E., Thévenin D. Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade // Energy Conversion Management. 2011. V. 52. № 1. P. 236–242. https://doi.org/:10.1016/j.enconman.2010.06.070.
  18. Chan C.M., Bai H.L., He D.Q. Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm // Applied Energy. 2018. V. 213. P. 148–157. https://doi.org/:10.1016/j.apenergy.2018.01.02.
  19. Tartuferi M., D’Alessandro B., Montelpare S., Ricci R. Enhancement of Savonius Wind Rotor Aerodynamic Performance: a Computational Study of New Blade Shapes and Curtain Systems // Energy. 2015. V. 79. P. 371–384. https://doi.org/:10.1016/j.energy.2014.11.023.
  20. Tomar S.S., Dewan A., Singh T.P. Effects of Axisymmetric-Omnidirectional Deflector on Aerodynamics of Modified Bach Savonius Rotor for Power Enhancement // Energy Convers. Manag. 2023. V. 297. P. 117720. https://doi.org/:10.1016/j.enconman.2023.117720.
  21. Selyutskiy Y.D., Klimina L.A., Masterova A.A., Hwang S.S., Lin C.H. Savonius Rotor as a Part of Complex Systems // J. Sound & Vibr. 2019. V. 442. P. 1–10. https://doi.org/:10.1016/j.jsv.2018.10.020.
  22. Zolotov I.I., Shevtsov A.A., Mkrtychev S.V. Simulation Model of Dynamic Voltage Stabilizer for Autonomous Power Supply Systems // J. Physics: Conference Series. 2019. V. 1333, N. 6. P. 062034. https://doi.org/:10.1088/1742–6596/1333/6/062034.
  23. Kоршунов А.И. Два подхода к анализу устойчивости стабилизаторов напряжения постоянного тока с переменной структурой силовой части // Практическая силовая электроника. 2017. № 2(66). С. 12–19.
  24. Dosaev M.Z., Lin C.H., Lu W.L., Samsonov V.A., Selyutskii Yu.D. A Qualitative Analysis of the Steady Modes of Operation of Small Wind Power Generators // J. Appl. Math. Mech. 2009. V. 73. № 3. P. 259–263. https://doi.org/:10.1016/j.jappmathmech.2009.07.015.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the considered system

Download (14KB)
3. Fig. 2. The dependence of the voltage at the output of the stabilizer on the voltage at the input

Download (6KB)
4. Fig. 3. Dependences of input voltage and current on angular velocity: a – ; b –

Download (16KB)
5. Fig. 4. Dependences on speed at different values of load resistance

Download (20KB)
6. Fig. 5. Bifurcation diagram of stationary modes

Download (11KB)
7. Fig. 6. Dependence on load resistance for generator 1: points – experimental data, straight line – approximation (3.2)

Download (10KB)
8. Fig. 7. The dependence of the voltage at the output of the stabilizer on the voltage at the input

Download (7KB)
9. 8. Dependences of the stabilizer input current on the angular velocity of the generator shaft at different load resistance values

Download (11KB)
10. Fig. 9. Laboratory installation with a Savonius rotor in a wind tunnel

Download (9KB)
11. 10. Dependence on load resistance for generator 2: points – experimental data, straight line – approximation (3.2)

Download (7KB)
12. Fig. 11. Dependence of speed in stationary modes on the dimensionless load resistance (stabilizer disabled)

Download (5KB)
13. Fig. 12. Dependence of speed in stationary modes on the dimensionless load resistance (stabilizer is on)

Download (5KB)

Copyright (c) 2024 Russian Academy of Sciences