A TWO-PLANET PROBLEM WITH AN ARBITRARY INCLINATION OF A PAIR OF ORBITS. SECULAR EVOLUTION OF THE KEPLER-117 EXOSYSTEM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

By a new method we study the actual variant of the two-planet problem on the secular evolution of planetary orbits with small eccentricities and mutual inclination, having arbitrary orientation with respect to the main (picture) plane. A model has been developed that describes a wide class of exoplanetary systems with an orbital inclination angle different from π / 2. The orbits of the planets are modeled by Gaussian rings, the perturbing function is represented by the mutual gravitational energy of these rings in the form of a series up to terms of second order of smallness. To describe the evolution of orbits, instead of osculating Keplerian elements, a new set of variables is introduced: the unit vector R of normal to the plane of the ring and two Poincaré variables (p,q); for eight independent variables, a system of differential equations is obtained and analytically solved. The method is applied to study the secular evolution of the two-planet system Kepler-117 (KOI-209) with non-resonant orbits of exoplanets. It has been established that in this system the oscillations of the components of the orientation vector R of the same name for each of the orbits, as well as the values (e,i,Ω), occur strictly in the opposite phase. The eccentricities of both orbits oscillate with a period of Tk = 182.3 years, and the inclinations of the orbits and the longitudes of the ascending nodes change in the libration mode with the same period Tg = 174.5 years. The lines of the orbital angles rotate unevenly counterclockwise with periods of secular rotation Tg2 = 178.3 years (for a light planet), and Tg1 = 8140 years (for a more massive planet).

About the authors

B. P. Kondratyev

Sternberg State Astronomical Institute, Physical Faculty of Lomonosov Moscow State University

Email: work@boris-kondratyev.ru
Main (Pulkovo) Astronomical Observatory of the RAS Moscow, Russia; St. Petersburg, Russia

V. S. Kornoukhov

Sternberg State Astronomical Institute, Physical Faculty of Lomonosov Moscow State University

Moscow, Russia

References

  1. K. Moppeti, C. Дермонт Динамика Солнечной системы (2009).
  2. K.B. Хамисвиков, Э.Д. Кузнецов, Астрономический Вестник 41, № 4, 291 (2007).
  3. Б.П. Кондратьев, Астрономический Вестник 48, № 5? 366 (2014).
  4. Б.П. Кондратьев, В.С. Корноухов, Астрон. Журн. 97, № 5, 408–420 (2020).
  5. Б.П. Кондратьев, В.С. Корноухов, Астрон. Журн. 100, № 6, 524–534 (2023).
  6. Б.П. Кондратьев, В.С. Корноухов, Е.В. Басова, Вестник Московского университета. Серия 3: Физика, астрономия. 78, № 5, 1–8 (2023).
  7. https:exoplanetarchive.ipae.caltech.edu.
  8. S. Hinkley, S. Lacour, G.-D. Marleau et al., Astron. and Astrophys. 671, L5 (2023).
  9. R. Mastrolanni, Ch. Efthymiopoulos, Proceedings IAU Symposium No. 364 (2022).
  10. Б.П. Кондратьев, В.С. Корноухов, Е.Н. Киреева, Вестник Московского университета. Серия 3: Физика, астрономия 80, № 2, 1–8 (2025).
  11. М.Ф. Субботинг Введение в теоретическую астрономию (1968).
  12. Г.Н. Дубошин Небесная механика. Основные задачи и методы (1975).
  13. Б.П. Кондратьев Теория потенциала и фигуры равновесия (Москва-Ижевск: РХД, 2003).
  14. G. Bruno, J.-M. Almenara, S.C.C. Barros et al., Astron. and Astrophys. 573, A124 (2015).
  15. J.M. Almenara et al., Monthly Not. Roy. Astron. Soc. 453, 2644–2652 (2015).
  16. N. Bailey, D. Fabrycky, Astron. J. 159, id. 217 (2020).
  17. Y. Judkovsky et al., Astron. J. 163, id. 91 (2022).
  18. A. Ofir et al., Astron. J. 169, id. 90 (2025).
  19. Б.П. Кондратьев, Астрофизика 21, № 3, 499 (1984).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences