MODELING OF THE HOT JUPITER HAT-P-32 b AND TRANSIT ABSORPTIONS IN EXCITED HYDROGEN AND HELIUM ATOM LINES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The results of absorption modeling in the hydrogen Hα 6563 Å and helium 10830 Å lines for the hot Jupiter HAT-P-32 b are presented. The modeling was performed using a three-dimensional hydrodynamic code together with the Monte Carlo model of Lyα photon transport. A wide range of stellar radiation and atmospheric parameters was considered. It was found that the measured spectrally resolved transit absorption in both lines can be well described by model calculations with the stellar radiation in the XUV range limited to 200 erg/cm2/s per 1 AU, the helium content in the planet's atmosphere He/H=2/98 and metallicity [Fe/H] = -1. It is shown that absorption in the helium line occurs uniformly in a large volume of the outflowing atmosphere, and in the hydrogen line — in a layer of 1.5–2.75 planet radii.

Sobre autores

S. Sharipov

Institute of Laser Physics SB RAS

Email: stas.sharipov@mail.ru
Novosibirsk, Russia

I. Shaikhislamov

Institute of Laser Physics SB RAS; Institute of Astronomy of the RAS; Novosibirsk State Technical University

Novosibirsk, Russia; Moscow, Russia; Novosibirsk, Russia

I. Miroshnichenko

Institute of Laser Physics SB RAS; Novosibirsk State Technical University

Novosibirsk, Russia; Novosibirsk, Russia

M. Rumenskikh

Institute of Laser Physics SB RAS; Institute of Astronomy of the RAS; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation

Novosibirsk, Russia; Moscow, Russia; Moscow, Russia

A. Shepelin

Institute of Laser Physics SB RAS

Novosibirsk, Russia

M. Golubovsky

Institute of Laser Physics SB RAS

Novosibirsk, Russia

Bibliografia

  1. M. Mayor, D. Queloz, Nature 378, 355–359 (1995).
  2. M. Zhang, P.W. Cauley, H.A. Knutson, K. France, L. Kreidberg, A. Oklopčić, S. Redfield, E.L. Shkolnik, Astron. J. 164, 237 (2022).
  3. G. Chen, N. Casasayas-Barris, E. Palle, F. Yan, M. Stanger, H. Cegla, R. Allart, C. Lovis, Astron. and Astrophys. 635, A171 (2020).
  4. S. Czesia, M. Lampon, J. Sanz-Forcada, A.G. Muñoz, M. López-Puertas, L. Nortmann, D. Yan, E. Nagel, F. Yan, J.H. Schmitt, Astron. and Astrophys. 657, A6 (2022).
  5. A. Bello-Arufe, H.A. Knutson, J.M. Mendonça, M.M. Zhang, S.H. Cabot, A.D. Ratheke, A. Ulla, S. Vissapragada, L.A. Buchhave, Astron. J. 166, 69 (2023).
  6. Z. Zhang, C.V. Morley, M. Gully-Santiago, M. MacLeod, A. Okopcic, J. Luna, Q.H. Tran, J.P. Ninan, S. Mahadevan, D.M. Krolikowski, Sci. Adv. 9 eadf8736 (2023).
  7. A. Garcia Muñoz, P.C. Schneider, Astrophys. J. Lett. 884, L43 (2019).
  8. M. Lampon, M. López-Puertas, L.M. Lara, A. Sánchez-López, M. Salz, S. Czesla, J. Sanz-Forcada, K. Molaverdikhani, F.J. Alonso-Floriano, L. Nortmann, Astron. and Astrophys. 636, A13 (2020).
  9. M. Lampon, M. López-Puertas, J. Sanz-Forcada, S. Czesla, L. Nortmann, N. Casasayas-Barris, J. Orell-Miquel, A. Sánchez-López, C. Danielski, E. Palle, Astron. and Astrophys. 673, A140 (2023).
  10. D. Yan, J. Guo, K. Seon, M. López-Puertas, S. Czesla, M. Lampon, Astron. and Astrophys. 686, A208 (2024).
  11. J.L. Linsky, K. France, T. Ayres, Astrophys. J. 766, 69 (2013).
  12. I.F. Shaikhislamov, M.L. Khodachenko, H. Lammer, A.G. Berezutsky, I.B. Miroshnichenko, M.S. Rumenskikh, Monthly Not. Roy. Astron. Soc. 491, 3435–3447 (2020).
  13. I.F. Shaikhislamov, M.L. Khodachenko, H. Lammer, A.G. Berezutsky, I.B. Miroshnichenko, M.S. Rumenskikh, Monthly Not. Roy. Astron. Soc. 481, 5315–5323 (2018).
  14. M.S. Rumenskikh, I.F. Shaikhislamov, Atmos Ocean Opt 37, 192–198 (2024).
  15. I.F. Shaikhislamov, M.L. Khodachenko, H. Lammer, A.G. Berezutsky, I.B. Miroshnichenko, M.S. Rumenskikh, Monthly Not. Roy. Astron. Soc. staa2367 (2020).
  16. I.B. Miroshnichenko, I.F. Shaikhislamov, A.G. Berezutskii, M.S. Rumenskikh, E.S. Vetrova, Astron. Rep. 65, 61–69 (2021).
  17. S.S. Sharipov, I.B. Miroshnichenko, I.F. Shaikhislamov, Astron. Rep. 67, 272–279 (2023).
  18. M. Dijkstra, J.X. Prochaska, M. Ouchi, M. Hayes Lyman-Alpha as an Astrophysical and Cosmological Tool: Saas-Fee Advanced Course 46 (Swiss Society for Astrophysics and Astronomy, Springer Berlin Heidelberg, Berlin, Heidelberg, 2019).
  19. I.F. Shaikhislamov, I.B. Miroshnichenko, S.S. Sharipov, M.S. Rumenskikh, M.P. Golubovsky, A.G. Berezutsky, A.V. Shepelin, A.A. Chibranov, M.L. Khodachenko, Astron. and Astrophys. 696, A211 (2025).
  20. I.F. Shaikhislamov, M.L. Khodachenko, Yu.L. Sasunov, H. Lammer, K.G. Kislyakova, N.V. Erkaev, Astrophys. J. 795, 132 (2014).
  21. I.F. Shaikhislamov, M.L. Khodachenko, H. Lammer, K.G. Kislyakova, L. Fossati, C.P. Johnstone, P.A. Prokopov, A.G. Berezutsky, Yu.P. Zakharov, V.G. Posukh, Astrophys. J. 832, 173 (2016).
  22. I.F. Shaikhislamov, I.B. Miroshnichenko, M.S. Rumenskikh, A.V. Shepelin, A.G. Berezutsky, S.S. Sharipov, M.P. Golubovsky, A.A. Chibranov, M.L. Khodachenko, Astron. Rep. 68, 802–817 (2024).
  23. D.A. Verner, G.J. Ferland, D.G. Yakovlev, Astrophysics 465, 487 (1996).
  24. G.S. Voronov, At. Data Nucl. Data Tables 65, 1–35 (1997).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025