Marker-Assisted Development of Spring Soft Wheat Hybrids with Colored Grain for the Selection of Varieties with Increased Anthocyanin Content in Western Siberia
- Авторлар: Chumanova E.V.1, Efremova T.T.1, Sobolev K.V.1, Kosyaeva E.A.1
-
Мекемелер:
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
- Шығарылым: Том 61, № 8 (2025)
- Беттер: 18-37
- Бөлім: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://vestnik.nvsu.ru/0016-6758/article/view/693811
- DOI: https://doi.org/10.31857/S0016675825080031
- ID: 693811
Дәйексөз келтіру
Аннотация
Using DNA markers, homozygous plants with combinations of Pp-D1 and Pp3 genes exhibiting purple pericarp, as well as the Pp-D1, Pp3 and Ba1 genes resulting in black grain color of due to anthocyanins accumulation in pericarp and aleurone layer were isolated from six hybrid F2 populations obtained with participation of spring soft wheat varieties: Novosibirskaya 31, Sibirskaya 21 and Leader 80. Hybrid plants with a high level of anthocyanins, phenolic compounds, and antioxidant activity were isolated; these can be used to obtain improved commercial soft wheat varieties with increased content of biologically active components in grain, adapted to the conditions of Western Siberia. It was shown that the dominant allele Pp-D1 was found in 20% of Russian varieties and in 15 of 37 analyzed varieties of European selection, which will allow for the application of a simplified scheme for obtaining new hybrids with purple pericarp by controlling only the transfer of the Pp3 gene.
Негізгі сөздер
Авторлар туралы
E. Chumanova
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: chumanova@bionet.nsc.ru
Novosibirsk, 630090 Russia
T. Efremova
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Email: chumanova@bionet.nsc.ru
Novosibirsk, 630090 Russia
K. Sobolev
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Email: chumanova@bionet.nsc.ru
Novosibirsk, 630090 Russia
E. Kosyaeva
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Email: chumanova@bionet.nsc.ru
Novosibirsk, 630090 Russia
Әдебиет тізімі
- Liu J., Yu L.L., Wu Y. Bioactive components and health beneficial properties of whole wheat foods // J. Agricultural and Food Chemistry. 2020. V. 68. № 46. P. 12904–12915. https://doi.org/10.1021/acs.jafc.0c00705
- Gamel T.H., Muhammad S., Saeed G. et al. Purple wheat: Food development, anthocyanin stability, and potential health benefits // Foods. 2023. V. 12. № 7. https://doi.org/10.3390/foods12071358
- Полонский В.И., Лоскутов И.Г., Сумина А.В. Селекция на содержание антиоксидантов в зерне как перспективное направление для получения продуктов здорового питания // Вавил. журн. генетики и селекции. 2018. Т. 22. № 3. С. 343–352. https://doi.org/10.18699/VJ18.370
- Shoeva O.Y., Gordeeva E.I., Khlestkina E.K. The regulation of anthocyanin synthesis in the wheat pericarp // Molecules. 2014. V. 19. № 12. P. 20266–20279. https://doi.org/10.3390/molecules191220266
- Gordeeva E.I., Shoeva O.Y., Khlestkina E.K. Marker- assisted development of bread wheat near-isogenic lines carrying various combinations of purple pericarp (Pp) alleles // Euphytica. 2015. V. 203. № 2. P. 469–476. https://doi.org/10.1007/s10681-014-1317-8
- Zong Y., Xi X., Li S. et al. Allelic variation and transcriptional isoforms of wheat TaMYC1 gene regulating anthocyanin synthesis in pericarp // Front. Plant Sci. 2017. V. 8. https://doi.org/10.3389/fpls.2017.01645
- Jiang W., Liu T., Nan W. et al. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat // J. Experim. Bot. 2018. V. 69. № 10. P. 2555–2567. https://doi.org/10.1093/jxb/ery101
- Salvatore E., Samuela P., Paolo V. et al. Identification and development of functional markers for purple grain genes in durum wheat (Triticum durum Desf.) // Theor. Appl. Genet. 2024. V. 137. № 9. P. 1–16. https://doi.org/10.1007/s00122-024-04710-0
- Ye G.J., Wei L., Chen W.J. et al. Frame-shift mutation causes the function loss of TaMYB-A1 regulating anthocyanin biosynthesis in Triticum aestivum // Cereal Res. Commun. 2017. V. 45. № 1. P. 35–46. https://doi.org/10.1556/0806.44.2016.042
- Zeven A.C. Wheats with purple and blue grains: A review // Euphytica. 1991. V. 56 № 3. P. 243–258. https://doi.org/10.1007/bf00042371
- Zheng Q., Li B., Mu S. et al. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat // Genome. 2006. V. 49. № 9. P. 1109–1114. https://doi.org/10.1139/g06-073
- Yu K., Liu D., Yang W. et al. Development of an integrated linkage map of einkorn wheat and its application for QTL mapping and genome sequence ancho- ring // Theor. Appl. Genet. 2017. V. 130. P. 53–70. https://doi.org/10.1007/s00122-016-2791-2
- Shen Y., Shen J., Dawadondup et al. Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum // Mol. Breed. 2013. V. 31. № 1. P. 195–204. https://doi.org/10.1007/s11032-012-9783-y
- Liu X., Zhang M., Jiang X. et al. TbMYC4A is a candidate gene controlling the blue aleurone trait in a wheat-Triticum boeoticum substitution line // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.762265
- Kumari A., Sharma S., Sharma N. et al. Sensory characteristics of chapatti (indian flatbread) // Molecules. 2020. V. 25. № 21. P. 1–14. https://doi.org/10.3390/molecules25215071
- Paznocht L., Kotíková Z., Burešová B. et al. Phenolic acids in kernels of different coloured-grain wheat ge- notypes // Plant, Soil and Environment. 2020. V. 66. № 2. P. 57–64. https://doi.org/10.17221/380/2019-pse
- Sharma A., Yadav M., Tiwari A. et al. A compa- rative study of colored wheat lines across laboratories for validation of their phytochemicals and antioxidant activity // J. Cereal Sci. 2023. V. 112. https://doi.org/10.1016/j.jcs.2023.103719
- Arbuzova V.S., Maystrenko O.I., Popova O.M. Development of near-isogenic lines of the common wheat cultivar ‘Saratovskaya 29’ // Cereal Res. Commun. 1998. V. 26. № 1. P. 39–46. https://doi.org/10.1007/bf03543466
- Efremova T.T., Morozov S.V., Chernyak E.I., Chumanova E.V. Combining the genes of blue aleurone and purple pericarp in the genotype of spring bread wheat Saratovskaya 29 to increase anthocyanins in grain // J. Cereal Sci. 2023. V. 109. https://doi.org/10.1016/j.jcs.2022.103616
- Sharp P.J., Kreis M., Shewry P.R., Gale M.D. Location of β-amylase sequences in wheat and its relatives // Theor. Appl. Genet. 1988. V. 75. № 2. P. 286–290. https://doi.org/10.1007/bf00303966
- Li X., Qian X., L.X. et al. Upregulated structural and regulatory genes involved in anthocyanin biosynthesis for coloration of purple grains during the middle and late grain-filling stages // Plant. Physiol. Biochem. 2018. V. 130. P. 235–247. https://doi.org/10.1016/j.plaphy.2018.07.011
- Korzun V., Roder M., Worland A.J., Börner A. Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrn1) in wheat by using RFLP and microsatellite markers // Plant Breeding. 1997. V. 116. № 3. P. 227–232. https://doi.org/10.1111/j.1439-0523.1997.tb00987.x
- Гордеева Е.И., Шоева О.Ю., Шаманин В.П., Хлесткина Е.К. Использование молекулярных маркеров в селекции мягкой пшеницы (Triticum aestivum L.) с различной антоциановой окраской зерновок // Письма в Вавил. журн. генетики и селекции. 2023. Т. 9. № 2. С. 86–99. https://doi.org/10.18699/LettersVJ-2023-9-11
- Röder M.S., Korzun V., Wendehake K. et al. A microsatellite map of wheat // Genetics. 1998. V. 149. № 4. P. 2007–2023. https://doi.org/10.1093/genetics/149.4.2007
- Шоева О.Ю., Гордеева Е.И., Хлесткина Е.К. Внутригенный ДНК-маркёр для отбора пшеницы с повышенным содержанием антоцианов в перикарпе зерновки. Патент № 2774444, 29.11.2021.
- Abdel-Aal E.-S.M., Hucl P. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats // Cer. Chem. 1999. V. 76. № 3. P. 350–354. https://doi.org/10.1094/cchem.1999.76.3.350
- Kukoeva T.V., Molobekova C.A., Totsky I.V. et al. Enrichment of grain anthocyanin content through marker-assisted breeding for Ant1, Ant2 or HvMyc2 genes in barley (Hordeum vulgare L.) // Agronomy. 2024. V. 14. № 6. https://doi.org/10.3390/agronomy14061231
- Гордеева Е.И., Шаманин В.П., Хлесткина Е.К., Шоева О.Ю. Об особенностях селекции фиолетовозерной пшеницы на основе сортов c антоциановой окраской колеоптиля и стебля // С.-хоз. биология. 2024. Т. 59. № 3. С. 507–524. https://doi.org/10.15389/agrobiology.2024.3.507rus
- Василова Н.З., Асхадуллин Д.Ф., Асхадул- лин Д.Ф. и др. Фиолетовозерный сорт яровой мягкой пшеницы Надира // Зернобобовые и крупяные культуры. 2021. Т. 40. № 4. С. 66–75. https://doi.org/10.24412/2309-348X-2021-4-66-75
- Потоцкая И.В., Нардин Д.С., Юркинсон А.В. и др. Перспективы «цветной пшеницы» для функционального питания // Сб. тезисов Междунар. конф. «Вавиловские чтения – 2022». С. 190–194.
- Рубец В.С., Ворончихина И.Н., Игонин В.Н. и др. Характеристика фиолетовозерных сортов яровой мягкой пшеницы в условиях центрального района нечерноземной зоны России // Междунар. с.-хоз. журн. 2022. Т. 65. № 5. С. 525–529. https://doi.org/10.55186/25876740_2022_65_5_525
- Žofajová A., Havrlentová M., Ondrejovič M. et al. Variability of quantitative and qualitative traits of coloured winter wheat // Agriculture. 2017. V. 63. № 3. P. 102–111. https://doi.org/10.1515/agri-2017-0010
- Gordeeva E., Shamanin V., Shoeva O. et al. The strategy for marker-assisted breeding of anthocyanin-rich spring bread wheat (Triticum aestivum L.) cultivars in Wes-tern Siberia // Agronomy. 2020. V. 10. № 10. https://doi.org/10.3390/agronomy10101603
- Abdel-Aal E.-S.M., Young J.C., Rabalski I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains // J. Agric. Food Chem. 2006. V. 54. № 13. P. 4696–4704. https://doi.org/10.1021/jf0606609
- Garg M., Chawla M., Chunduri V. et al. Transfer of grain colors to elite wheat cultivars and their characterization // J. Cereal Sci. 2016. V. 71. P. 138–144. https://doi.org/10.1016/j.jcs.2016.08.004
- Wang X., Zhang X., Hou H. et al. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.) // Food Res. Int. 2020. V. 138. https://doi.org/10.1016/j.foodres.2020.109711
- Sharma S., Chunduri V., Kumar A. et al. Anthocyanin bio-fortified colored wheat: Nutritional and functional characterization // PLoS One. 2018. V. 13. № 4. https://doi.org/10.1371/journal.pone.0194367
- Sharma N., Tiwari V., Vats S. et al. Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat-grass juice against common human pathogens // Molecules. 2020. V. 25. № 24. https://doi.org/10.3390/molecules25245785
- Razgonova M.P., Zakharenko A.M., Gordeeva E.I. et al. Phytochemical analysis of phenolics, sterols, and terpenes in colored wheat grains by liquid chromatography with tandem mass spectrometry // Molecules. 2021. V. 26. № 18. https://doi.org/10.3390/molecules26185580
- Syed Jaafar S.N., Baron J., Siebenhandl-Ehn S. et al. Increased anthocyanin content in purple pericarp × blue aleurone wheat crosses // Plant Breeding. 2013. V. 132. № 6. P. 546–552. https://doi.org/10.1111/pbr.12090
- Garg M. NABIMG-9-Blue; BW/2*/PBW621 (IC0620914; INGR17001), a wheat (Triticum aestivum) germplasm with blue grain (aleurone) color. // Ind. J. Plant Genetic Resour. 2018. V. 31. № 3. P. 332–333.
Қосымша файлдар
