ЛЮМИНЕСЦЕНТНЫЕ НАНОЧАСТИЦЫ ПОЛИЭЛЕКТРОЛИТНОГО КОМПЛЕКСА ХИТОЗАНА С КАРРАГИНАНОМ КАК ПЕРСПЕКТИВНЫЕ МНОГОФУНКЦИОНАЛЬНЫЕ СИСТЕМЫ ДОСТАВКИ ВАНКОМИЦИНА
- Авторы: Шилова С.В.1, Миргалеев Г.М.1, Сагдеев Д.О.1, Галяметдинов Ю.Г.1
-
Учреждения:
- Казанский национальный исследовательский технологический университет
- Выпуск: Том 87, № 5 (2025)
- Страницы: 575-590
- Раздел: Статьи
- Статья получена: 02.12.2025
- Статья опубликована: 15.09.2025
- URL: https://vestnik.nvsu.ru/0023-2912/article/view/697456
- DOI: https://doi.org/10.7868/S3034543X25050077
- ID: 697456
Цитировать
Полный текст
Аннотация
Получены и охарактеризованы наночастицы полиэлектролитного комплекса хитозана с κ-каррагинаном, содержащие квантовые точки «ядро–оболочка» CdS/ZnS, как модели биосовместимых люминесцентных систем доставки антибиотика ванкомицина с эффективностью инкапсулирования 95–97%. Квантовые точки получены коллоидным методом синтеза и гидрофилизированы меркаптопропионовой кислотой. Изучено влияние ванкомицина, инкапсулированного в частицы полиэлектролитного комплекса, на люминесцентные свойства квантовых точек CdS/ZnS. Продемонстрированы возможности синтезированных квантовых точек в качестве модельных наносенсоров для определения включения и высвобождения ванкомицина из разработанных носителей на основе тушения люминесценции квантовых точек. Исследовано связывание ванкомицина с альбумином как моделью белка крови, определен состав комплекса ([ванкомицин] : [альбумин] = 1.0 : 2.0) и константа его устойчивости (βκ= 6.0·10-4 M−1). Анализ кинетических данных высвобождения ванкомицина из полимерных носителей в условиях in vitro в растворы альбумина и трис-буфера в рамках математической модели Корсмейера–Пеппаса, показал, что высвобождение антибиотика контролируется как диффузией, так и релаксацией полимерной матрицы.
Об авторах
С. В. Шилова
Казанский национальный исследовательский технологический университет
Email: s_shilova74@mail.ru
Казань, Россия
Г. М. Миргалеев
Казанский национальный исследовательский технологический университет
Email: email@example.com
Казань, Россия
Д. О. Сагдеев
Казанский национальный исследовательский технологический университет
Email: email@example.com
Казань, Россия
Ю. Г. Галяметдинов
Казанский национальный исследовательский технологический университет
Email: email@example.com
Казань, Россия
Список литературы
- Kalia M. Personalized oncology: recent advances and future challenges // Metabolism. 2013. V. 62. S11–S14. https://doi.org/10.1016/j.metabol.2012.08.016
- Jain T., Kumar S., Dutta P.K. Teranostics: A way of modern diagnostics and the role of chitosan // J. Mol. Genet. Med. 2015. V. 9. № 1. P. e1000159. https://doi.org/10.4172/1747-0862.1000159
- Muthu M.S., Leong D.T., Mei L., Feng S.S. Nanotheranostics application and further development of nanomedicine strategies for advanced theranostics // Theranostics. 2014. V. 4. № 6. P. 660–677. https://doi.org/10.7150/thno.8698
- Galeeva A.I., Selivanova N.M., Galyametdinov Yu.G. Wetting and adhesive properties of biopolymer-based organized condensed phases as drug delivery systems // Liq. Cryst. and their Appl. 2023. V. 23. № 4. P. 38–48. (in Russian). https://doi.org/10.18083/LCAppl.2023.4.38
- Wu X., Yang H., Yang W., Chen X., Gao J., Gong X., Wang H., Duan Y., Wei D., Chang J. Nanoparticle-based diagnostic and therapeutic systems for brain tumors // J. Mater. Chem. B. 2019. V. 7. № 31. P. 4734–4750. https://doi.org/10.1039/C9TB00860H
- Zhao D., Yu S., Sun B., Gao S., Guo S., Zhao K. Biomedical applications of chitosan and its derivative nanoparticles // Polymers. 2018. V. 10. № 4. P. 462–479. https://doi.org/10.3390/polym10040462
- Victor R.S., Santos A.M.C., Sousa B.V., Neves G.A., Santana L.N.L., Menezes R.R. A review on Chitosan’s uses as biomaterial: Tissue engineering, drug delivery systems and cancer treatment // Materials. 2020. V. 13. № 21. P. 4995. https://doi.org/10.3390/ma13214995
- Yuao Wu, Run Zhang, Huong D. N. Tran, Nyoman D. Kurniawan, Shehzahdi S. Moonshi, Andrew K. Whittake, Hang T. Ta. Chitosan nanococktails containing both ceria and superparamagnetic iron oxide nanoparticles for reactive oxygen species-related theranostics // ACS Appl. Nano Mater. 2021. V. 4. № 4. P. 3604–3618. https://doi.org/10.1021/acsanm.1c00141
- Kou S.G., Peters L., Mucalo M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms // Carbohydr. Polym. 2022. № 282. P. 119132. https://doi.org/10.1016/j.carbpol.2022.119132
- Краюхина М.А., Самойлова Н.А., Ямсков И.А. Полиэлектролитные комплексы хитозана: формирование, свойства и применение // Успехи химии. 2008. Т. 77. № 9. С. 854−869.
- Миргалеев Г.М., Шилова С.В. Связывание флуоресцеина хитозаном и полиэлектролитным комплексом на его основе в водных растворах // Коллоидный журнал. 2024. Т. 86. №3. С. 379−389. https://doi.org/10.31857/S0023291224030074
- Quadrado R.F.N., Fajardo A.R. Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems // Arab. J. Chem. 2020. V. 13. № 1. P. 2183−2194. https://doi.org/10.1016/j.arabjc.2018.04.004
- Shilova S.V., Mirgaleev G.M., Romanova K.A., Galyametdinov Y.G. Alginate/chitosan hydrogels as perspective transport systems for cefotaxime // Biopolymers. 2023. V. 114. № 10. P. e23555. https://doi.org/10.1002/bip.23555
- Mahdavinia G.R., Mosallanezhad A., Soleymani M., Sabzi M. Magneticand pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug // Int. J. Biol. Macromol. 2017. V. 1. P. 209–217. http://dx.doi.org/10.1016/j.ijbiomac.2017.01.012
- Kumar R., Najda A., Duhan J.S., Kumar B., Chawla P., Klepacka J., Malawski S., Kumar Sadh P., Poonia A.K. Assessment of antifungal efficacy and release behavior of fungicide-loaded chitosan-carrageenan nanoparticles against phytopathogenic fungi // Polymers. 2022. V. 14. P. 41. https://doi.org/10.3390/polym14010041
- Щипунов Ю.А. Структура полиэлектролитных комплексов на примере гидрогелей хитозана с лямбда-каррагинаном // Высокомолек. соед. Сер. А. 2020. Т. 62. № 1. С. 57–64. https://doi.org/10.31857/S2308112020010101
- Olanrewaju A. Aladesuyi, Thabang C. Lebepe, Rodney Maluleke, Oluwatobi S. Oluwafemi. Biological applications of ternary quantum dots: A review // Nanotech. Rev. 2022. V. 11. № 1. P. 2304–2319. https://doi.org/10.1515/ntrev-2022-0136
- Bezrukov A.N., Galeeva A.I., Krupin A.S., Galyametdinov Y.G. Molecular orientation behavior of lyotropic liquid crystal–carbon dot hybrids in microfluidic confinement // Int. J. Mol. Sci. 2024. V. 25. №10. P. 5520. https://doi.org/10.3390/ijms25105520
- Elugoke S.E., Uwaya G.E., Quadri T.W., Ebenso E.E. Carbon quantum dots: basics, properties, and fundamentals // Carbon Dots: Recent Developments and Future Perspectives. 2024. Chapter 1. P. 3–42. https://doi.org/10.1021/bk-2024-1465.ch001
- Zhao J., Wu J. Preparation and characterization of the fluorescent chitosan nanoparticle probe // Chin. J. Anal. Chem. 2006. V. 34. № 11. P. 1555–1559. https://doi.org/10.1016/S1872-2040(07)60015-2
- Derfus A.M., Chan W.C., Bhatia S.N. Probing the cytotoxicity of semiconductor quantum dots // Nano Letters. 2004. V. 4. № 1. P. 11–18. https://doi.org/10.1021/nl0347334
- Cunha B.A. Vancomycin // Med. Clin. N. Am. 1995. V. 79. № 4. P. 817–831. https://doi.org/10.1016/S0025-7125(16)30041-4
- Elyasi S., Khalili H., Dashti-Khavidak S., Mohammadpour A. Vancomycin-induced nephrotoxicity: Mechanism, incidence, risk factors and special populations. A literature review // Eur. J. Clin. Pharmacol. 2012. V. 68. P. 1243–1255. https://doi.org/10.1007/s00228-012-1259-9
- Bruniera F.R., Ferreira F.M., Saviolli L.R.M., Bacci M.R., Feder D., Pedreira M., Peterlini M.A.S., Azzalis L., Junqueira V.B.C., Fonseca F.L. The use of vancomycin with its therapeutic and adverse effects: A review // Eur. Rev. Med. Pharm. Sci. 2015. V. 19. P. 694–700.
- Shilova S.V., Sagdeev D.O., Mirgaleev G.M., Romanova K.A., Galyametdinov Yu.G. Novel nanosensors represented by CdS/ZnS quantum dots doped with manganese (II) ions for detection of vancomycin // Physica Scripta. 2025. V. 100. № 3. P. 035906. https://doi.org/10.1088/1402-4896/adadaa
- Pfaller M., Krogstad D., Granich G., Murray P. Laboratory evaluation of five assay methods for vancomycin: Bioassay, high-pressure liquid chromatography, fluorescence polarization immunoassay, radioimmunoassay, and fluorescence immunoassay // J. Clin. Microbiol. 1984. V. 20. № 3. P. 311–316. https://doi.org/10.1128/jcm.20.3.311-316.1984
- Nascimento P.A.D., Kogawa A.C., Salgado H.R.N. Current status of vancomycin analytical methods // J. AOAC Int. 2020. V. 103. № 3. P. 755–769. https://doi.org/10.1093/jaocint/qsz024
- Cheng X., Ma J., Su J. An Overview of analytical methodologies for determination of vancomycin in human plasma // Molecules. 2022. V. 27. № 21. P. 7319. https://doi.org/10.3390/molecules27217319
- Крупин С.В., Мягченков В.А., Третьякова А.Я., Вяселева Г.Я., Торсуев Д.М., Булидорова Г.В., Курмаева А.И., Коноплева А.А. Практикум по физикохимии растворов и дисперсий полимеров. Казань: Казан. гос. технол. ун-т. 2003. 154 с.
- Sagdeev D.O., Shamilov R.R., Galyametdinov Y.G. Quantum dots luminescent compounds with multimodal luminescence for fuel labeling // Physica Scripta. 2023. V. 98. № 10. P. 105101. https://doi.org/10.1088/1402-4896/acf3b3
- Галяметдинов Ю.Г., Крупин А.С., Сагдеев Д.О., Карякин М.Е., Шамилов Р.Р., Князев А.А. Люминесцентные композиты на основе жидкокристаллического комплекса европия (III) и квантовых точек CdSe/CdS/ZnS // Жидк. крист. и их практич. использ. 2022. Т. 22. № 1. С. 27–38. https://doi.org/10.18083/LCAppl.2022.1.27
- Zhou N., He C.X. An improved method of isomolar series by dual-wavelength spectrophotometry // Microchimica Acta. 1993. V. 111. № 4. P. 183–191. https://doi.org/10.1007/BF01245305
- Knowles C., Knowles A. Practical Absorption Spectrometry: Ultraviolet Spectrometry Group. Springer Science & Business Media, 2013.
- Tiwari A.K. Yadav H.P., Gupta M.K., Narayan R.J., Pandey P.C. Synthesis of vancomycin functionalized fluorescent gold nanoparticles and selective sensing of mercury (II) // Front. Chem. 2023. V. 11.P. 1238631. https://doi.org/10.3389/fchem.2023.1238631
- Liang W., Liu S., Liu Z., Li D., Wang L., Haо C., He Y. Electron transfer and fluorescence ‘‘turn-off’’ based CdTe quantum dots for vancomycin detection at nanogram level in aqueous serum media // New J. Chem. 2015. V. 39. № 6. P. 4774–4782. https://doi.org/10.1039/c4nj01764a
- Motz R.N., Sun A.C., Lehnherr D., Ruccolo S. High-throughput determination of Stern-Volmer quenching constants for common photocatalysts and quenchers // ACS Org. Inorg. 2023. V. 3. № 5. P. 266−273. https://doi.org/10.1021/acsorginorgau.3c00019
- Crank J. The Mathematics of Diffusion. Oxford: Clarendon Press, 1975.
- Ritger P.L., Peppas N.A. A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs // J. Control. Release. 1987. V. 5. № 1. P. 23–36. https://doi.org/10.1016/0168-3659(87)90034-4
- Petrova V.A., Orekhov A.S., Chernyakov D.D., Baklagina Yu.G., Romanov D.P., Kononova S.V., Volod’ko A.V., Ermak I.M., Klechkovskaya V.V., Skorik Yu.A. Preparation and analysis of multilayer composites based on polyelectrolyte complexes // Crystallogr. Rep. 2016. V. 61. P. 945–953. https://doi.org/10.1134/S1063774516060110
- Kononova S.V., Volod’ko A.V., Petrova V.A., Kruchinina E.V., Baklagina Y.G., Chusovitin E.A., Skorik Yu.A. Pervaporation multilayer membranes based on a polyelectrolyte complex of λ-carrageenan and chitosan // Carbohydr. Polym. 2018. V. 181. P. 86–92. https://doi.org/10.1016/j.carbpol.2017.10.050
- Dubashynskaya N.V., Petrova V.A., Sgibnev A.V., Elokhovskiy V.Y., Cherkasova Y.I., Skorik Yu.A. Carrageenan/chitin nanowhiskers cryogels for vaginal delivery of metronidazole // Polymers. 2023. V. 15. № 10. P. 2362. https://doi.org/10.3390/polym15102362
- Patterson A. The scherrer formula for X-Ray particle size determination // Phys. Rev. 1939. V. 56. № 10. P. 978−982.https://doi.org/10.1103/PhysRev.56.978
- Li L., Chen D., Zhang Y., Deng Z., Ren X., Meng X., Tang F., Ren J., Zhang L. Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system // Nanotechnology. 2007. V. 18. № 40. P. 405102.https://doi.org/10.1088/0957-4484/18/40/405102
- Bern M., Sand K.M.K., Nilsen J., Sandlie I., Ander J.T. The role of albumin receptors in regulation of albumin homeostasis: Implications for drug delivery // J. Controlled Release. 2015. V. 211. P. 144–162. http://doi.org/10.1016/j.jconrel.2015.06.006
- Иорданский А.Л., Заиков Г.Е., Берлин А.А. Диффузионная кинетика и гидролиз биоразлагаемых полимеров. Потеря массы и контроль высвобождения низкомолекулярных веществ // Вестн. Казанского технолог. ун-та. 2015. Т. 18. № 2. С. 81–87.
Дополнительные файлы

