Sorption of neutral red dye by entersorbent polysorb mp from aot microemulsion in N-decan

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Sorption of the cationic neutral red dye by Polysorb MP from a microemulsion of 0.25 mol/l AOT in n-decane was carried out at different contents of the aqueous pseudophase. The maximum sorption capacity of the sorbent in the microemulsion exceeded the corresponding one in the aqueous phase by an order of magnitude and amounted to 55 mg/g. A sharp drop in the degree of extraction with an increase in the water content of the microemulsion from 1 to 8 volume percent and the reversibility of sorption processes were demonstrated. Anionic dyes were not extracted by Polysorb MP in the same systems. With increasing water content, the zeta potential of SiO2 particles decreased from 18 to 1 mV. Based on the obtained dependencies, a cation exchange mechanism of microemulsion sorption was proposed, including the exchange of sodium and neutral red cations between micelles adsorbed on the surface of particles and micelles in the bulk of the microemulsion.

Texto integral

Acesso é fechado

Sobre autores

M. Demidova

Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН

Email: nikshapar@mail.ru
Rússia, Новосибирск

T. Podlipskaya

Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН

Email: nikshapar@mail.ru
Rússia, Новосибирск

N. Shaparenko

Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН

Autor responsável pela correspondência
Email: nikshapar@mail.ru
Rússia, Новосибирск

M. Barakina

Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН; Новосибирский государственный университет

Email: nikshapar@mail.ru
Rússia, Новосибирск; Новосибирск

V. Tatarchuk

Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН

Email: nikshapar@mail.ru
Rússia, Новосибирск

A. Bulavchenko

Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН

Email: nikshapar@mail.ru
Rússia, Новосибирск

Bibliografia

  1. Bera A., Mandal A. Microemulsions: a novel approach to enhanced oil recovery: a review // J. Petrol. Explor. Prod. Technol. 2015. V. 5. P. 255–268. https://doi.org/10.1007/s13202-014-0139-5
  2. Федоренко С.В., Степанов А.С., Бочкова О.Д., Мустафина А.Р. Основные процессы, способствующие формированию композитных кремнеземных наноколлоидов, допированных комплексами d-, f-металлов и неорганическими наночастицами // Коллоид. журн. 2022. Т. 84. № 5. С. 630–641. https://doi.org/10.31857/S0023291222600067
  3. Мурашова Н.М., Нгуен Х.Т. Микроэмульсии лецитина с маслом гака и эфирным маслом куркумы // Коллоид. жур. 2023. Т. 85. № 2. С. 191–199. https://doi.org/10.31857/S0023291223600049
  4. Schwarze M., Pogrzeba T., Volovych I., Schomacker R. Microemulsion systems for catalytic reactions and processes // Catal. Sci. Technol. 2015. V. 5. P. 24–33. https://doi.org/10.1039/c4cy01121j
  5. Gradzielski M., Duvail M., Malo de Molina P., Simon M., Talmon Y. Using microemulsions: formulation based on knowledge of their mesostructured // Chem. Rev. 2021. V. 121. № 10. P. 5671–5740. https://doi.org/10.1021/acs.chemrev.0c00812
  6. Agarwala R., Mulky L. Adsorption of dyes from wastewater: a comprehensive review // ChemBioEng Reviews. 2023. V. 10. № 3. P. 326–335. https://doi.org/10.1002/cben.202200011
  7. Yi S., Deng Y., Sun S. Adsorption and dyeing characteristics of reactive dyes onto cotton fiber in nonionic Triton X-100 reverse micelles // Fibers Polym. 2014. V. 15. P. 2131–2138. https://doi.org/10.1007/s12221-014-2131-6
  8. Tang Y.L., Jin S., Lee C.H., Law H.S., Yu J., Wang Y., Kan C. Reverse micellar dyeing of cotton fabric with reactive dye using biodegradable non-ionic surfactant as nanoscale carrier: an optimization study by one-factor-at-one-time approach // Polymers. 2023. V. 15. № 20. P. 4175. https://doi.org/10.3390/polym15204175
  9. Sharma R., Kar P.K., Dash S. Adsorption of a styrylpyridinium dye on silica and modified silica surfaces from some binary solvent mixtures-should we call it solvent-induced preferential adsorption? // J. Phys. Chem. C. 2023. V. 127. P. 20539–20548. https://doi.org/10.1021/acs.jpcc.3c05023
  10. Khraishes M.A.M., Al-ghouti M.S. Enhanced dye adsorption by microemulsion-modified calcined diatomite (µE-CD) // Adsorption. 2005. V. 11. P. 547–559. https://doi.org/10.1007/s10450-005-5612-5
  11. Skrabkova H.S., Bubenschikov V.B., Kodina G.E., Lunev A.S., Larenkov A.A., Epshtein N.B., Kabashin A.V. 68Ga-adsorption on the Si-nanoparticles // IOP Conf. Series: Materials Science and Engineering. 2019. V. 487. P. 012026. https://doi.org/10.1088/1757-899X/487/1/012026
  12. Shklyaeva A.S., Vasilieva O.V., Kucuk V.I. The study of physical and chemical properties aqueous dispersion of enterosorbent Polysorb MP // Butlerov Commun. 2013. V. 35. P. 94–99.
  13. Shah Z.A., Zaib K., Khan A., Saeed M. Dye sensitized solar cells based on different solvents: comparative study // J. Fundam. Renewable Energy Appl. 2017. V. 7. № 4. P. 1000234. https://doi.org/10.4172/2090-4541.1000234
  14. Fang H., Ma J., Wilhelm M.J., DeLacy B.G., Dai H.L. Influence of solvent on dye-sensitized solar cell efficiency: what is so special about acetonitrile? // Particles and Particle Systems Characterization. 2021. V. 38. P. 2000220. https://doi.org/10.1002/ppsc.202000220
  15. Eicke H.F. Aggregation in surfactant solutions: formation and properties of micelles and microemulsions // Pure Appl. Chem. 1980. V. 52. P. 1349–1357.
  16. Булавченко А.И., Батищева Е.К., Подлипская Т.Ю., Торгов В.Г. Коллоидно-химические взаимодействия при концентрировании металлов обратными мицеллами оксиэтилированных поверхностно-активных веществ. Исследование солюбилизации // Коллоидный журнал. 1996. Т. 58. № 2. С. 163-168.
  17. Булавченко А.И., Подлипская Т.Ю., Торгов В.Г. Структурные перестройки обратных мицелл оксиэтилированных ПАВ при инъекционной солюбилизации растворов HCl // Журнал физической химии. 2004. Т. 78. № 12. С. 2258–2263.
  18. Knysh A., Sokolov P., Nabiev I. Dynamic light scattering analysis in biomedical research and applications of nanoparticles and polymers // J. Biomed. Photonics Eng. 2023. V. 9. № 2. P. 020203. https://doi.org/10.18287/JBPE23.09.020203
  19. Ohshima H. A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles // J. Colloid Interface Sci. 1994. V. 168. P. 269–271. https://doi.org/10.1006/jcis.1994.1419
  20. Шапаренко Н.О., Бекетова Д.И., Демидова М.Г., Булавченко А.И. Регулирование заряда и гидродинамического диаметра наночастиц диоксида кремния в микроэмульсиях АОТ // Коллоид. жур. 2019. Т. 81. № 1. С. 78–85. https://doi.org/10.1134/S0023291219010105
  21. Shaparenko N.O., Demidova M.G., Bulavhcenko A.I. Electrophoretic mobility and stability of SiO2 nanoparticles in the solutions of AOT in n-hexadecane-chloroform // Electrophoresis. 2021. V. 42. № 16. P. 1648–1654. https://doi.org/10.1002/elps.202100060
  22. Maxim M.E., Stinga G., Iovescu A., Baran A., Ikie C., Anghel D.F. Monitorizing methylene blue inclusion in reverse micellar nanostructures // Revue Roumaine de Chimie. 2012. V. 57. P. 203–208.
  23. Faeder J., Ladanyi B.M. Molecular dynamics simulations of the interior of aqueous reverse micelles // J. Phys. Chem. B. 2000. V. 104. № 5. P. 1033–1046. https://doi.org/10.1021/jp993076u
  24. Tartaro G., Mateos H., Schirone D., Angelico R., Palazzo G. Microemulsions microstructure(s): A tutorial review // Nanomaterials. 2020. V. 10. P. 1657. https://doi.org/10.3390/nano10091657
  25. Van der Minne J.L., Hermanie P.H.J. Electrophoresis measurements in benzene-correlation with stability. I. Development of method // J. Colloid Sci. 1952. V. 7. № 6. P. 600–615. https://doi.org/10.1016/0095-8522(52)90042-1
  26. Поповецкий П.С. Модели стабилизации заряженных частиц поверхностно-активными веществами в неполярных средах // Коллоид. жур. 2023. Т. 85. № 6. С. 806–817. https://doi.org/10.31857/S0023291223600621
  27. Saitoh T., Matsushima S., Hiraide M. Aerosol-OT-γ-alumina admicelles for the concentration of hydrophobic organic compounds in water // J. Chromatography A. 2004. V. 1040. № 2. P. 185–191. https://doi.org/10.1016/j.chroma.2004.04.010
  28. Bulavchenko A.I., Popovetsky P.S. Structure of adsorption layer of silver nanoparticles in sodium bis-(2-ethylhexyl) sulfosuccinate solutions in n-decane as observed by photon-correlation spectroscopy and nonaqueous electrophoresis // Langmuir. 2014. V. 30. № 43. P. 12729–12735. https://doi.org/10.1021/la5004935
  29. Kalam S., Abu-Khamsin S.A., Kamal M.S., Patil S. Surfactant adsorption isotherms: a review // ACS Omega. 2021. V. 6. № 48. P. 32342–32348. https://doi.org/10.1021/acsomega.1c04661
  30. Strubbe F., Neyts K. Charge transport by inverse micelles in non-polar media // J. Phys.: Condens. Matter. 2017. V. 29. P. 453003. https://doi.org/10.1088/1361-648X/aa8bf6
  31. Bulavchenko A.I., Shaparenko N.O., Kompan’kov N.B., Popovetskiy P.S., Demidova M.G., Arymbaeva A.T. The formation of free ions and electrophoretic mobility of Ag and Au nanoparticles in n-hexadecane-chloroform mixtures at low concentrations of AOT // Phys. Chem. Chem. Phys. 2020. V. 22. P. 14671–14681. https://doi.org/10.1039/D0CP02153A
  32. Kopanichuk I.V., Novikov V.A., Vanin A.A., Brodskaya E.N. The electric properties of AOT reverse micelles by molecular dynamics simulations // J. Mol. Liq. 2019. V. 296. P. 111960. https://doi.org/10.1016/j.molliq.2019.111960
  33. Bulavchenko A.I., Batishchev A.F., Batishcheva E.K., Torgov V.G. Modeling of the electrostatic interaction of ions in dry isolated micelles of AOT by the method of direct optimization // J. Phys. Chem. B. 2002. V. 106. № 25. P. 6381–6389. https://doi.org/10.1021/jp0144000
  34. Bairabathina V., Shanmugam K.S.K., Chilukoti G.R., Ponnam V., Raju G., Chidhambaram P. A review on reverse micellar approach for natural fiber dyeing // Color. Technol. 2022. V. 138. P. 329–341. https://doi.org/10.1111/cote.12605
  35. Ханхасаева С.Ц., Дашинамжилова Э.Ц., Бадмаева С.В., Бардамова А.Л. Адсорбция триарилметанового красителя на Ca-монтмориллоните: равновесие, кинетика и термодинамика // Коллоид. жур. 2018. Т. 80. № 4. С. 472–478. https://doi.org/10.1134/S0023291218040043
  36. Арефьева О.Д., Пироговская П.Д., Панасенко А.Е., Ковехова А.В., Земнухова Л.А. Кислотно-основные свойства аморфного диоксида кремния из соломы и шелухи риса // Химия растительного сырья. 2٠21. № 1. С. 327–335. https://doi.org/10.14258/jcprm.2021017521
  37. Гиндин Л.М. Экстракционные процессы и их применение // 1984. Москва: Наука. С. 144.
  38. Murakami H., Kanahara Y., Sasaki K. Freezing of water solvation dynamics in nanoconfinement by reverse micelles at room temperature // Langmuir. 2024. V. 40. № 25. P. 13082–13091. https://doi.org/10.1021/acs.langmuir.4c00926
  39. Moulik S.P., Paul B.K., Mukherjee D.C. Acid-base behavior of neutral red in compartmentalized liquids (micelles and microemulsions) // J. Col. Interface Sci. 1993. V. 161. № 1. P. 72–82. https://doi.org/10.1006/jcis.1993.1443
  40. Кузнецов Д.Н., Кобраков К.И., Ручкина А.Г. Биологически активные синтетические органические красители // Изв. Вузов. Химия и Хим. Технология. 2017. Т. 60. С. 4–33. https://doi.org/10.6060/tcct.2017601.5423
  41. Umar O., Kumar K., Joshi A., Khairiya D., Teotia D., Ikram. A comprehensive review on microemulsions: a potential novel drug delivery system // Int. J. Indig. Herbs Drugs. 2022. V. 7. № 3. P. 56–61. https://doi.org/10.46956/ijihd.v7i3.315

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Absorption spectra of NC in AOT microemulsion in n-decane depending on the concentration of NC (a), and calibration dependences for water (1) and microemulsion (2) (b). The water content in the microemulsion is 0.4 vol.%.

Baixar (205KB)
3. Fig. 2. Absorption spectra of NC (0.005 mg/ml) in water and microemulsion at water contents of 0.8 and 8 vol.% (a) and the dependence of the shift λmax of the absorption spectrum of NC in the microemulsion relative to its aqueous solution on the water content in the microemulsion and the parameter W (b).

Baixar (161KB)
4. Fig. 3. Dependence of the hydrodynamic diameter of AOT micelles and the zeta potential of Polysorb particles on the content of the aqueous pseudophase in the microemulsion.

Baixar (95KB)
5. Fig. 4. TEM (a) and HRTEM (b) – photographs of Polysorb MP powder and the primary particle size distribution function (inset).

Baixar (619KB)
6. Fig. 5. Sorption isotherms (a) and extraction degree (b) of NC from water (1) and microemulsions with an aqueous pseudophase content of 0.4 (2) and 1.5 vol. % (3). The inset in Fig. a shows dependence 1 in the region of low concentrations.

Baixar (179KB)
7. Fig. 6. The degree of NC extraction depending on the water content in the AOT microemulsion in decane. The initial concentration of NC was 0.005 mg/ml.

Baixar (64KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025