METAL-BASED INKS FOR PRINTED ELECTRONIC COMPARISON OF THE MAIN APPROACHES TO OBTAIN
- 作者: Popovetskiy P.S.1
-
隶属关系:
- Nikolaev Institute of Inorganic Chemistry, Siberian branch, Russian Academy of Sciences
- 期: 卷 87, 编号 5 (2025)
- 页面: 537-562
- 栏目: Articles
- ##submission.dateSubmitted##: 02.12.2025
- ##submission.datePublished##: 15.09.2025
- URL: https://vestnik.nvsu.ru/0023-2912/article/view/697454
- DOI: https://doi.org/10.7868/S3034543X25050057
- ID: 697454
如何引用文章
详细
Printed electronic is an area of modern materials science that is undergoing rapid development. The use of printing equipment has the potential to significantly simplify and reduce the cost of obtaining passive and active electronic components. Dozens of reviews and hundreds of scientific articles are published annually in this field. However, it should be noted that the consumer characteristics of ink formulations for printed electronic are, to a certain extent, compromises. Improving one property usually results in a deterioration of another. For example, increasing the content of the main component usually leads to a decrease in stability. This review paper will compare two main approaches to obtaining metal-based inks, which can be conventionally called “organometallic” and “colloidal,” examine their strengths and weaknesses, and assess the prospects for further development in printed electronic.
作者简介
P. Popovetskiy
Nikolaev Institute of Inorganic Chemistry, Siberian branch, Russian Academy of Sciences
Email: popovetskiy@niic.nsc.ru
Novosibirsk, Russia
参考
- Calvert P. Inkjet printing for materials and devices // Chemistry of Materials. 2001. V. 13. № 10. P. 3299–3305. https://doi.org/10.1021/cm0101632
- Perelaer J., Smith P.J., Mager D., et al. Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials // Journal of Materials Chemistry. 2010. V. 20. № 39. P. 8446–8453. https://doi.org/10.1039/c0jm00264j
- Kamyshny A., Magdassi S. Conductive nanomaterials for printed electronics // Small. 2014. V. 10. № 17. P. 3515–3535. https://doi.org/10.1002/smll.201303000
- Kamyshny A., Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics // Chemical Society Reviews. V. 48. № 6. P. 1712–1740. https://doi.org/10.1039/C8CS00738A
- Kamyshny A., Steinke J., Magdassi S. Metal-based inkjet inks for printed electronics // The Open Applied Physics Journal. 2011. V. 4. № 1. P. 19–36. https://doi.org/10.2174/1874183501104010019
- Htwe Y.Z.N., Mariatti M., Khan J. Review on solventand surfactant-assisted water-based conductive inks for printed flexible electronics applications // Journal of Materials Science: Materials in Electronics. 2024. V. 35. № 18. P. 1191. https://doi.org/10.1007/s10854-024-12927-4
- Singh M., Haverinen H.M., Dhagat P., et al. Inkjet printing – process and its applications // Advanced Materials. 2010. V. 22. № 6. P. 673–685. https://doi.org/10.1002/adma.200901141
- Wu W. Inorganic nanomaterials for printed electronics: a review // Nanoscale. 2017. V. 9. № 22. P. 7342–7372. https://doi.org/10.1039/c7nr01604b
- Lemarchand J., Bridonneau N., Battaglini N., et al. Challenges, prospects, and emerging applications of inkjet‐printed electronics: a chemist’s point of view // Angewandte Chemie International Edition. 2022. V. 61. № 20. P. e202200166. https://doi.org/10.1002/anie.202200166
- Huang Q., Zhu Y. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications // Advanced Materials Technologies. 2019. V. 4. № 5. P. 1–41. https://doi.org/10.1002/admt.201800546
- Aleeva Y., Pignataro B. Recent advances in upscalable wet methods and ink formulations for printed electronics // J. Mater. Chem. C. 2014. V. 2. № 32. P. 6436–6453. https://doi.org/10.1039/C4TC00618F
- Nayak L., Mohanty S., Nayak S.K., et al. A review on inkjet printing of nanoparticle inks for flexible electronics // Journal of Materials Chemistry C. 2019. V. 7. № 29. P. 8771–8795. https://doi.org/10.1039/C9TC01630A
- Khan Y., Thielens A., Muin S., et al. A new frontier of printed electronics: flexible hybrid electronics // Advanced Materials. 2020. V. 32. № 15. P. 1–29. https://doi.org/10.1002/adma.201905279
- Khan S., Lorenzelli L. Recent advances of conductive nanocomposites in printed and flexible electronics // Smart Materials and Structures. 2017. V. 26. № 8. P. 083001. https://doi.org/10.1088/1361-665X/aa7373
- Bi S., Gao B., Han X., et al. Recent progress in printing flexible electronics: a review // Science China Technological Sciences. 2024. V. 67. № 8. P. 2363–2386. https://doi.org/10.1007/s11431-021-2093-4
- Zavanelli N., Yeo W.-H. Advances in screen printing of conductive nanomaterials for stretchable electronics // ACS Omega. 2021. V. 6. № 14. P. 9344–9351. https://doi.org/10.1021/acsomega.1c00638
- Naghdi S., Rhee K.Y., Hui D., et al. A Review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications // Coatings. 2018. V. 8. № 8. P. 278. https://doi.org/10.3390/coatings8080278
- Li D., Lai W., Zhang Y., et al. Printable transparent conductive films for flexible electronics // Advanced Materials. 2018. V. 30. № 10. P. 1–24. https://doi.org/10.1002/adma.201704738
- Li W., Akhter Z., Vaseem M., et al. Optically transparent and flexible radio frequency electronics through printing technologies // Advanced Materials Technologies. 2022. V. 7. № 6. P. 1–18. https://doi.org/10.1002/admt.202101277
- Yan K., Li J., Pan L., et al. Inkjet printing for flexible and wearable electronics // APL Materials. 2020. V. 8. № 12. P. 120705. https://doi.org/10.1063/5.0031669
- Won D., Bang J., Choi S.H., et al. Transparent electronics for wearable electronics application // Chemical Reviews. 2023. V. 123. № 16. P. 9982–10078. https://doi.org/10.1021/acs.chemrev.3c00139
- Słoma M. 3D printed electronics with nanomaterials // Nanoscale. 2023. V. 15. № 12. P. 5623–5648. https://doi.org/10.1039/D2NR06771D
- Nabi S., Isaev A., Chiolerio A. Inkjet printing of functional materials for low-temperature electronics: a review of materials and strategies // ACS Applied Electronic Materials. 2024. V. 6. № 11. P. 7679–7719. https://doi.org/10.1021/acsaelm.4c01257
- Choi Y., Seong K., Piao Y. Metal−organic decomposition ink for printed electronics // Advanced Materials Interfaces. 2019. V. 6. № 20. P. 1–14. https://doi.org/10.1002/admi.201901002
- Kell A.J., Wagner K., Liu X., et al. Advanced applications of metal-organic decomposition inks in printed electronics // ACS Applied Electronic Materials. 2024. V. 6. № 1. P. 1–23. https://doi.org/10.1021/acsaelm.3c00910
- Junfeng Mei, Lovell M.R., Mickle M.H. Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits // IEEE Transactions on Electronics Packaging Manufacturing. 2005. V. 28. № 3. P. 265–273. https://doi.org/10.1109/TEPM.2005.852542
- He J., Kunitake T. Formation of silver nanoparticles and nanocraters on silicon wafers // Langmuir. 2006. V. 22. № 18. P. 7881–7884. https://doi.org/10.1021/la0610349
- Wu J.-T., Hsu S.L.-C., Tsai M.-H., et al. Conductive silver patterns via ethylene glycol vapor reduction of ink-jet printed silver nitrate tracks on a polyimide substrate // Thin Solid Films. 2009. V. 517. № 20. P. 5913–5917. https://doi.org/10.1016/j.tsf.2009.04.049
- Liu Z., Su Y., Varahramyan K. Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers // Thin Solid Films. 2005. V. 478. № 1–2. P. 275–279. https://doi.org/10.1016/j.tsf.2004.11.077
- Xue F., Liu Z., Su Y., et al. Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors // Microelectronic Engineering. 2006. V. 83. № 2. P. 298–302. https://doi.org/10.1016/j.mee.2005.09.002
- Yin Y., Li Z.-Y., Zhong Z., et al. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process // Journal of Materials Chemistry. 2002. V. 12. № 3. P. 522–527. https://doi.org/10.1039/b107469e
- Vaseem M., McKerricher G., Shamim A. Robust design of a particle-free silver-organo-complex ink with high conductivity and inkjet stability for flexible electronics // ACS Applied Materials and Interfaces. 2016. V. 8. № 1. P. 177–186. https://doi.org/10.1021/acsami.5b08125
- Walker S.B., Lewis J.A. Reactive silver inks for patterning high-conductivity features at mild temperatures // Journal of the American Chemical Society. 2012. V. 134. № 3. P. 1419–1421. https://doi.org/10.1021/ja209267c
- Kholuiskaya S.N., Siracusa V., Mukhametova G.M., et al. An approach to a silver conductive ink for inkjet printer technology // Polymers. 2024. V. 16. № 12. P. 1731. https://doi.org/10.3390/polym16121731
- Kastner J., Faury T., Außerhuber H.M., et al. Silver-based reactive ink for inkjet-printing of conductive lines on textiles // Microelectronic Engineering. 2017. V. 176. P. 84–88. https://doi.org/10.1016/j.mee.2017.02.004
- Shahariar H., Kim I., Soewardiman H., et al. Inkjet printing of reactive silver ink on textiles // ACS Applied Materials & Interfaces. 2019. V. 11. № 6. P. 6208–6216. https://doi.org/10.1021/acsami.8b18231
- Yang W., Liu C., Zhang Z., et al. One step synthesis of uniform organic silver ink drawing directly on paper substrates // Journal of Materials Chemistry. 2012. V. 22. № 43. P. 23012–23016. https://doi.org/10.1039/c2jm34264b
- Liu G., Yang W., Wang C., et al. A rapid fabrication approach for the capacitive accelerometer based on 3D printing and a silver particle-free ink // Journal of Materials Science: Materials in Electronics. 2021. V. 32. № 13. P. 17901–17910. https://doi.org/10.1007/s10854-021-06326-2
- Yang W., Wang C., Arrighi V., et al. One step synthesis of a hybrid Ag/RGO conductive ink using a complexation–covalent bonding based approach // Journal of Materials Science: Materials in Electronics. 2017. V. 28. № 11. P. 8218–8230. https://doi.org/10.1007/s10854-017-6533-2
- Jahn S.F., Blaudeck T., Baumann R.R., et al. Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands // Chemistry of Materials. 2010. V. 22. № 10. P. 3067–3071. https://doi.org/10.1021/cm9036428
- Zhang L., Gan G., Fan P., et al. Facile preparation of particle-free hybrid amine silver ink with synergistic effect for low-resistivity flexible films // Journal of Coatings Technology and Research. 2023. V. 20. № 6. P. 1845–1856. https://doi.org/10.1007/s11998-023-00781-8
- Zope K.R., Cormier D., Williams S.A. Reactive silver oxalate ink composition with enhanced curing conditions for flexible substrates // ACS Applied Materials & Interfaces. 2018. V. 10. № 4. P. 3830–3837. https://doi.org/10.1021/acsami.7b19161
- Yang W., Mathies F., Unger E.L., et al. One-pot synthesis of a stable and cost-effective silver particle-free ink for inkjet-printed flexible electronics // Journal of Materials Chemistry C. 2020. V. 8. № 46. P. 16443–16451. https://doi.org/10.1039/D0TC03864D
- Hu M., Cai X., Guo Q., et al. Direct pen writing of adhesive particle-free ultrahigh silver salt-loaded composite ink for stretchable circuits // ACS Nano. 2016. V. 10. № 1. P. 396–404. https://doi.org/10.1021/acsnano.5b05082
- Manjunath G., Pujar P., Gupta B., et al. Low-temperature reducible particle-free screen-printable silver ink for the fabrication of high conductive electrodes // Journal of Materials Science: Materials in Electronics. 2019. V. 30. № 20. P. 18647–18658. https://doi.org/10.1007/s10854-019-02217-9
- Adner D., Korb M., Schulze S., et al. A straightforward approach to oxide-free copper nanoparticles by thermal decomposition of a copper(I) precursor // Chemical Communications. 2013. V. 49. № 61. P. 6855–6857. https://doi.org/10.1039/c3cc42914h
- Lee Y.-I., Lee K.-J., Goo Y.-S., et al. Effect of complex agent on characteristics of copper conductive pattern formed by ink-jet printing // Japanese Journal of Applied Physics. 2010. V. 49. № 8R. P. 086501. https://doi.org/10.1143/JJAP.49.086501
- Lee Y.-I., Choa Y.-H. Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate // Journal of Materials Chemistry. 2012. V. 22. № 25. P. 12517– 12522. https://doi.org/10.1039/c2jm31381b
- Kim S.J., Lee J., Choi Y.-H., et al. Effect of copper concentration in printable copper inks on film fabrication // Thin Solid Films. 2012. V. 520. № 7. P. 2731–2734. https://doi.org/10.1016/j.tsf.2011.11.056
- Choi Y.-H., Lee J., Kim S.J., et al. Highly conductive polymer-decorated Cu electrode films printed on glass substrates with novel precursor-based inks and pastes // Journal of Materials Chemistry. 2012. V. 22. № 8. P. 3624– 3631. https://doi.org/10.1039/c2jm15124c
- Xu W., Wang T. Synergetic effect of blended alkylamines for copper complex ink to form conductive copper films // Langmuir. 2017. V. 33. № 1. P. 82–90. https://doi.org/10.1021/acs.langmuir.6b03668
- Paquet C., Lacelle T., Liu X., et al. The role of amine ligands in governing film morphology and electrical properties of copper films derived from copper formate-based molecular inks // Nanoscale. 2018. V. 10. № 15. P. 6911–6921. https://doi.org/10.1039/C7NR08891D
- Shin D.-H., Woo S., Yem H., et al. A self-reducible and alcohol-soluble copper-based metal–organic decomposition ink for printed electronics // ACS Applied Materials & Interfaces. 2014. V. 6. № 5. P. 3312–3319. https://doi.org/10.1021/am4036306
- Farraj Y., Grouchko M., Magdassi S. Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics // Chemical Communications. Royal Society of Chemistry, 2015. V. 51. № 9. P. 1587–1590. https://doi.org/10.1039/C4CC08749F
- Li D., Sutton D., Burgess A., et al. Conductive copper and nickel lines via reactive inkjet printing // Journal of Materials Chemistry. 2009. V. 19. № 22. P. 3719–3724. https://doi.org/10.1039/b820459d
- Abulikemu M., Da’as E.H., Haverinen H., et al. In situ synthesis of self‐assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing // Angewandte Chemie International Edition. 2014. V. 53. № 2. P. 420–423. https://doi.org/10.1002/anie.201308429
- Hong J., Yick S., Chow E., et al. Direct plasma printing of nano-gold from an inorganic precursor // Journal of Materials Chemistry C. 2019. V. 7. № 21. P. 6369–6374. https://doi.org/10.1039/C9TC01808E
- Nur H.M., Song J.H., Evans J.R.G., et al. Ink-jet printing of gold conductive tracks // Journal of Materials Science: Materials in Electronics. 2002. V. 13. № 4. P. 213–219. https://doi.org/10.1023/a:1014827900606
- Yamauchi T., Tsukahara Y., Sakamoto T., et al. Microwave-Assisted synthesis of monodisperse nickel nanoparticles using a complex of nickel formate with long-chain amine ligands // Bulletin of the Chemical Society of Japan. 2009. V. 82. № 8. P. 1044–1051. https://doi.org/10.1246/bcsj.82.1044
- Mahajan C.G., Alfadhel A., Irving M., et al. Magnetic field patterning of nickel nanowire film realized by printed precursor inks // Materials. 2019. V. 12. № 6. P. 928. https://doi.org/10.3390/ma12060928
- Yabuki A., Ichida Y., Kang S., et al. Nickel film synthesized by the thermal decomposition of nickel-amine complexes // Thin Solid Films. 2017. V. 642. P. 169–173. https://doi.org/10.1016/j.tsf.2017.09.040
- Xie W., Li X., Zhang M., et al. Formulating nickel metal organic decomposition ink with low sintering temperature and high conductivity for ink jet printing applications // Journal of Materials Science: Materials in Electronics. 2023. V. 34. № 27. P. 1872. https://doi.org/10.1007/s10854-023-11284-y
- Xie W., Li X., Zhang M., et al. A Nickel metal-organic-decomposition ink of nickel-ethanolamine complex leading to highly conductive nickel patterns for printed electronic applications // Thin Solid Films. 2022. V. 744. P. 139081. https://doi.org/10.1016/j.tsf.2022.139081
- Layani M., Gruchko M., Milo O., et al. Transparent conductive coatings by printing coffee ring arrays obtained at room temperature // ACS Nano. 2009. V. 3. № 11. P. 3537–3542. https://doi.org/10.1021/nn901239z
- Magdassi S., Grouchko M., Kamyshny A. Copper nanoparticles for printed electronics: Routes towards achieving oxidation stability // Materials. 2010. V. 3. № 9. P. 4626–4638. https://doi.org/10.3390/ma3094626
- Lee J.J., Park J.C., Kim M.H., et al. Silver complex inks for ink-jet printing: The synthesis and conversion to a metallic particulate ink // Journal of Ceramic Processing Research. 2007. V. 8. № 3. P. 219–223.
- Ryu B.H., Choi Y., Park H.S., et al. Synthesis of highly concentrated silver nanosol and its application to inkjet printing // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005. V. 270–271. P. 345–351. https://doi.org/10.1016/j.colsurfa.2005.09.005
- Vaseem M., Lee K.M., Hong A.R., et al. Inkjet Printed fractal-connected electrodes with silver nanoparticle ink // ACS Applied Materials and Interfaces. 2012. V. 4. № 6. P. 3300–3307. https://doi.org/10.1021/am300689d
- Yung K.C., Gu X., Lee C.P., et al. Ink-jet printing and camera flash sintering of silver tracks on different substrates // Journal of Materials Processing Technology. 2010. V. 210. № 15. P. 2268–2272. https://doi.org/10.1016/j.jmatprotec.2010.08.014
- Milardović S., Ivaniševic I., Rogina A., et al. Synthesis and electrochemical characterization of AgNP ink suitable for inkjet printing // International Journal of Electrochemical Science. 2018. V. 13. № 11. P. 11136–11149. https://doi.org/10.20964/2018.11.87
- Jeong S., Song H.C., Lee W.W., et al. Preparation of aqueous ag ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film // Journal of Applied Physics. 2010. V. 108. № 10. P. 102805. https://doi.org/10.1063/1.3511686
- Ahn B.Y., Lewis J.A. Amphiphilic Silver particles for conductive inks with controlled wetting behavior // Materials Chemistry and Physics. 2014. V. 148. № 3. P. 686–691. https://doi.org/10.1016/j.matchemphys.2014.08.035
- Magdassi S., Grouchko M., Berezin O., et al. Triggering the sintering of silver nanoparticles at room temperature // ACS Nano. 2010. V. 4. № 4. P. 1943–1948. https://doi.org/10.1021/nn901868t
- Grouchko M., Kamyshny A., Mihailescu C.F., et al. Conductive inks with a “built-in” mechanism that enables sintering at room temperature // ACS Nano. 2011. V. 5. № 4. P. 3354–3359. https://doi.org/10.1021/nn2005848
- Kim J.H., Lee S., Wajahat M., et al. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures // Nanoscale. 2019. V. 11. № 38. P. 17682–17688. https://doi.org/10.1039/c9nr05894j
- Jo Y., Oh S.-J., Lee S.S., et al. Extremely flexible, printable Ag conductive features on PET and paper substrates via continuous millisecond photonic sintering in a large area // J. Mater. Chem. 2014. V. 2. № 45. P. 9746–9753. https://doi.org/10.1039/C4TC01422G
- Bulavchenko A.I., Arymbaeva A.T., Demidova M.G., et al. Synthesis and concentration of organosols of silver nanoparticles stabilized by AOT: Emulsion versus microemulsion // Langmuir. 2018. V. 34. № 8. P. 2815–2822. https://doi.org/10.1021/acs.langmuir.7b04071
- Bulavchenko A.I., Pletnev D.N. Electrophoretic concentration of nanoparticles of gold in reversed micellar solutions of AOT // Journal of Physical Chemistry C. 2008. V. 112. № 42. P. 16365–16369. https://doi.org/10.1021/jp805268w
- Поповецкий П.С., Арымбаева А.Т., Бордзиловский Д.С., Майоров А.П., Максимовский Е.А., Булавченко А.И. Синтез и электрофоретическое концентрирование наночастиц серебра в обратных эмульсиях бис(2-этилгексил)сульфосукцината натрия и получение на их основе проводящих покрытий методом селективного лазерного спекания // Коллоидный ЖУрнал. 2019.Т 81. № 4. С. 501–507. https://doi.org/10.1134/S0023291219040116
- Воробьев С.А., Флерко М.Ю., Новикова С.А., et al. Синтез И Исследование Сверхконцентрированных Органозолей Наночастиц Серебра // Коллоидный Журнал. 2024. V. 86. № 2. P. 193–203. https://doi.org/10.31857/s0023291224020047
- Carey Lea M. Allotropic forms of silver // American Journal of Science. 1889. V. s3–38. № 223. P. 476–491. https://doi.org/10.2475/ajs.s3-38.223.47
- Vorobyev S.A., Likhatski M.N., Romanchenko A.S., et al. The influence of the reaction conditions on the size of silver nanoparticles in Carey Lea’s concentrated sols // Journal of Siberian Federal University. Chemistry. 2020. V. 13. № 3. P. 372–384. https://doi.org/10.17516/1998-2836-0190
- Vorobyev S.A., Likhatski M.N., Romanchenko A.S., et al. Fabrication of extremely concentrated silver hydrosols without additional stabilizers // ACS Sustainable Chemistry & Engineering. 2020. V. 8. № 46. P. 17225–17233. https://doi.org/10.1021/acssuschemeng.0c06006
- Kang J.S., Ryu J., Kim H.S., et al. Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light // Journal of Electronic Materials. 2011. V. 40. № 11. P. 2268–2277. https://doi.org/10.1007/s11664-011-1711-0
- Perelaer J., De Laat A.W.M., Hendriks C.E., et al. Inkjet-printed silver tracks: low temperature curing and thermal stability investigation // Journal of Materials Chemistry. 2008. V. 18. № 27. P. 3209–3215. https://doi.org/10.1039/b720032c
- Titkov A.I., Bukhanets O.G., Gadirov R.M., et al. Conductive inks for inkjet printing based on composition of nanoparticles and organic silver salt // Inorganic Materials: Applied Research. 2015. V. 6. № 4. P. 375–381. https://doi.org/10.1134/S2075113315040243
- Yukhin Y.M., Titkov A.I., Kulmukhamedov G.K., et al. Synthesis of silver nanoparticles via reduction of silver carboxylates by ethylene glycol // Theoretical Foundations of Chemical Engineering. 2015. V. 49. № 4. P. 490–496. https://doi.org/10.1134/S004057951504020X
- Титков А.И., Гадиров Р.М., Никонов С.Ю., et al. Селективное лазерное спекание токопроводящих чернил для струйной печати на основе композиции наночастиц и органической соли серебра // Известия Высших учебных заведений. Физика. 2017. V. 60. № 10. P. 24–29.
- Titkov A.I., Shundrina I.K., Gadirov R.M., et al. Thermal and laser sintering of a highly stable inkjet ink consisting of silver nanoparticles stabilized by a combination of a short chain carboxylic acid and a polymeric dispersant // Materials Today: Proceedings. 2018. V. 5. № 8. P. 16042–16050. https://doi.org/10.1016/j.matpr.2018.05.049
- Park B.K., Kim D., Jeong S., et al. Direct writing of copper conductive patterns by ink-jet printing // Thin Solid Films. 2007. V. 515. № 19. P. 7706–7711. https://doi.org/10.1016/j.tsf.2006.11.142
- Jason N.N., Shen W., Cheng W. Copper nanowires as conductive ink for low-cost draw-on electronics // ACS Applied Materials and Interfaces. 2015. V. 7. № 30. P. 16760–16766. https://doi.org/10.1021/acsami.5b04522
- Dharmadasa R., Jha M., Amos D.A., et al. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films // ACS Applied Materials and Interfaces. 2013. V. 5. № 24. P. 13227–13234.https://doi.org/10.1021/am404226e
- Hokita Y., Kanzaki M., Sugiyama T., et al. High-concentration synthesis of sub-10-nm copper nanoparticles for application to conductive nanoinks // ACS Applied Materials & Interfaces. 2015. V. 7. № 34. P. 19382–19389. https://doi.org/10.1021/acsami.5b05542
- Yuki Kawaguchi Y.K., Ryuichi R., Kawasaki H. Formate-free metal-organic decomposition inks of copper particles and self-reductive copper complex for the fabrication of conductive copper films // Journal of Coating Science and Technology. 2016. V. 3. № 2. P. 56–61. https://doi.org/10.6000/2369-3355.2016.03.02.2
- Yonezawa T., Tsukamoto H., Yong Y., et al. Low temperature sintering process of copper fine particles under nitrogen gas flow with Cu2+ -alkanolamine metallacycle compounds for electrically conductive layer formation // RSC Advances. Royal Society of Chemistry, 2016. V. 6. № 15. P. 12048–12052. https://doi.org/10.1039/C5RA25058G
- Lee B., Kim Y., Yang S., et al. A low-cure-temperature copper nano ink for highly conductive printed electrodes // Current Applied Physics. 2009. V. 9. № 2. P. e157–e160. https://doi.org/10.1016/j.cap.2009.03.008
- Kang J.S., Kim H.S., Ryu J., et al. Inkjet printed electronics using copper nanoparticle ink // Journal of Materials Science: Materials in Electronics. 2010. V. 21. № 11. P. 1213–1220. https://doi.org/10.1007/s10854-009-0049-3
- Kim H.S., Dhage S.R., Shim D.E., et al. Intense pulsed light sintering of copper nanoink for printed electronics // Applied Physics A: Materials Science and Processing. 2009. V. 97. № 4. P. 791–798. https://doi.org/10.1007/s00339-009-5360-6
- Joo S.-J., Hwang H.-J., Kim H.-S. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics // Nanotechnology. 2014. V. 25. № 26. P. 265601. https://doi.org/10.1088/0957-4484/25/26/265601
- Joo S.J., Park S.H., Moon C.J., et al. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique // ACS Applied Materials and Interfaces. 2015. V. 7. № 10. P. 5674–5684. https://doi.org/10.1021/am506765p
- Ryu C.H., Joo S.J., Kim H.S. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping // Applied Surface Science. 2016. V. 384. P. 182–191. https://doi.org/10.1016/j.apsusc.2016.05.025
- Benson J., Fung C.M., Lloyd J.S., et al. Direct patterning of gold nanoparticles using flexographic printing for biosensing applications // Nanoscale Research Letters. 2015. V. 10. P. 127. https://doi.org/10.1186/s11671-015-0835-1
- Pavithra M., Muruganand S., Parthiban C. Development of novel paper based electrochemical immunosensor with self-made gold nanoparticle ink and quinone derivate for highly sensitive carcinoembryonic antigen // Sensors and Actuators B: Chemical. 2018. V. 257. P. 496–503. https://doi.org/10.1016/j.snb.2017.10.177
- Deng M., Zhang X., Zhang Z., et al. A gold nanoparticle ink suitable for the fabrication of electrochemical electrode by inkjet printing // Journal of Nanoscience and Nanotechnology. 2014. V. 14. № 7. P. 5114–5119. https://doi.org/10.1166/jnn.2014.7208
- Cui W., Lu W., Zhang Y., et al. Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010. V. 358. № 1–3. P. 35–41. https://doi.org/10.1016/j.colsurfa.2010.01.023
- Mekhmouken S., Battaglini N., Mattana G., et al. Gold nanoparticle-based eco-friendly ink for electrode patterning on flexible substrates // Electrochemistry Communications. 2021. V. 123. P. 106918. https://doi.org/10.1016/j.elecom.2021.106918
- Podlipskaya T.Y., Shaparenko N.O., Demidova M.G., et al. The role of reverse micelles and metal-surfactant interactions in the synthesis of gold ink in reverse emulsions stabilized by AOT, tergitol NP-4 and Span 80 // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. V. 649. № April. P. 129452. https://doi.org/10.1016/j.colsurfa.2022.129452
- Bacalzo N.P., Go L.P., Querebillo C.J., et al. Controlled microwave-hydrolyzed starch as a stabilizer for green formulation of aqueous gold nanoparticle ink for flexible printed electronics // ACS Applied Nano Materials. 2018. V. 1. № 3. P. 1247–1256. https://doi.org/10.1021/acsanm.7b00379
- Reiser B., González-García L., Kanelidis I., et al. Gold nanorods with conjugated polymer ligands: Sintering-free conductive inks for printed electronics // Chemical Science. 2016. V. 7. № 7. P. 4190–4196. https://doi.org/10.1039/c6sc00142d
- Ye X., Zheng C., Chen J., et al. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods // Nano Letters. 2013. V. 13. № 2. P. 765–771. https://doi.org/10.1021/nl304478h
补充文件
