Нефтехимия
ISSN (print): 0028-2421
Свидетельство о регистрации СМИ: № 0110162 от 05.02.1993
Учредитель: Институт нефтехимического синтеза им. А.В. Топчиева РАН, Российская академия наук
Главный редактор: Максимов Антон Львович
Число выпусков в год: 6
Индексация: РИНЦ, перечень ВАК, Ядро РИНЦ, RSCI, CrossRef, Белый список (2 уровень)
Первый номер журнала "Нефтехимия" вышел в свет в феврале 1961 года.
Создание журнала - органа Отделения химических наук Академии наук СССР - ставило своей целью объединить усилия исследователей, работающих в области нефтехимии, способствовать координации научно-исследовательских работ, проводимых в этой области, и, в конечном счете, содействовать дальнейшему развитию нефтехимической науки и промышленности.
Первым главным редактором журнала стал выдающийся ученый-нефтехимик академик Топчиев Александр Васильевич, в полной мере оценивший важное значение нефтехимии в создании промышленного и экономического потенциала страны. Долгое время с 1963 по 1988 г. главным редактором журнала был профессор П.И. Санин; затем с 1989 по 1999 г. - академик Х.М. Миначев; c 2000 г. по март 2018 г. - академик С.Н. Хаджиев; с марта 2018 г. обязанности главного редактора журнала «Нефтехимия» выполняет доктор химических наук, профессор РАН, заместитель главного редактора А.Л. Максимов.
В состав первой редколлегии журнала вошли ученые-нефтехимики: П.И. Санин, А.С. Елинер, А.Н. Башкиров, Г.Д. Гальперн, К.Ф. Жигач, Б.А. Казанский, М.М. Кусаков, К.П. Лавровский, С.К. Макаров, М.Ф. Нагиев, Н.С.Наметкин, Р.Д. Оболенцев, А.Д. Петров, А.Ф. Платэ, Л.С. Полак, В.П. Суханов, Н.И. Шуйкин, Н.М. Эмануэль. На протяжении многих лет издания журнала состав редколлегии неоднократно менялся. В ней в разное время работали такие известные ученые-нефтехимики как Ал.А. Петров, В.В. Камзолкин. С.М. Локтев, Ю.Б. Америк, Е.Д. Радченко, Г.Ф. Большаков, В.М. Грязнов, Ю.А. Колбановский и другие.
Журнал публикует оригинальные статьи и обзоры теоретических и экспериментальных исследований, посвященных современным проблемам нефтехимии и переработки нефти, включая состав нефтей, природного газа и газоконденсатов; глубокой переработки нефти (крекинг, гидрокрекинг, каталитический риформинг), катализаторов нефтехимических процессов (гидрирования, изомеризации, окисления, гидроформилирования и пр.), активации и каталитического превращения углеводородов и других компонентов нефти, газа и иных органических жидкостей; новых нефтепродуктов, включая смазочные материалы и присадки; охраны окружающей среды. На страницах журнала также можно найти информацию о соответствующих научных мероприятиях в перечисленных областях науки и технологии.
В настоящее время на русском языке журнал издается Академиздатцентром «Наука», выходит шесть раз в год.
Текущий выпуск



Том 65, № 4 (2025)
Статьи
Замещенные цеолиты ZSM‑22: Сравнение физико-химических и каталитических свойств (обзор)
Аннотация
В обзоре проведен сравнительный анализ литературы по синтезу, физико-химическим и каталитическим свойствам замещенных цеолитов ZSM-22. Физико-химические характеристики Ce-, Fe-, Ga-, B- и V-замещенных образцов цеолитов ZSM-22 сравнены с характеристиками исходного аналога (на основании рентгенофазового анализа, просвечивающей электронной микроскопии, сканирующей электронной микроскопии, низкотемпературной адсорбции–десорбции азота, ИК-спектроскопии адсорбированного пиридина, УФ-спектроскопии, рентгенофазовой электронной спектроскопии, термопрограммируемой десорбции аммиака и др.). Показана возможность использования замещенных цеолитов ZSM-22 в реакциях гидроизомеризации длинноцепочечных углеводородов, изомеризации бутенов, превращения метанола в олефины, разложения закиси азота, диспропорционирования этилбензола и гидроксилирования аренов до фенолов.



Термокаталитическая переработка отходов полимеров в смеси с органическим растворителем с использованием высокодисперсного катализатора MoS2
Аннотация
Исследована термокаталитическая переработка полимерных отходов (ПО) полиолефинов и шинной резины (ШР) в смеси с органическим растворителем, в качестве которого использовали остаток вакуумной дистилляции нефти – гудрон. В экспериментах использовали отходы полиэтилена низкой и высокой плотности, полипропилена и шинной резины в гудроне, приготовленные в условиях автоклава при начальном давлении азота 0,1 МПа в интервале температур 150–380°C, при длительности перемешивания компонентов до 4 ч. Установлено, что для получения растворов с минимальной вязкостью температура растворения должна быть не ниже температуры начала термодеструкции ПО. Полученные в этих условиях растворы ПО и ШР в гудроне были подвергнуты гидрогенизационной переработке в присутствии суспензий наноразмерных частиц сульфидов Мо в автоклаве в интервале температур 430–450°C, давлении водорода 7,0 МПа с высокой конверсией при низком выходе кокса. Варьируя соотношение компонентов раствора – полиэтилена низкой плотности (ПЭНП), полиэтилена высокой плотности (ПЭВП), полипропилена (ПП), ШР и гудрона – можно получать дистиллятные фракции широкого углеводородного состава.



Зависимость свойств фторированного активирующего носителя и нанесенного металлоценового катализатора сополимеризации этилена от предварительной термообработки мезопористого силикагеля
Аннотация
Использование активирующих носителей в приготовлении нанесенных металлоценовых катализаторов полимеризации олефинов, получаемых реакцией мезопористого силикагеля с алюминийорганическими соединениями, термоокислительной обработкой и фторированием, позволяет избежать использования дорогостоящего и малодоступного метилалюмоксана (МАО). В работе представлены результаты исследования влияния температуры прокаливания мезопористого силикагеля ES70 на основные характеристики фторированных носителей на его основе и способность полученных носителей к активации (η5-BuC5H4)2ZrCl2 в присутствии Et3Al. Эксперименты по суспензионной сополимеризации этилена и гексена-1 выявили более высокую активность полученных катализаторов (2,2–2,5 кгПЭ/гкат) по сравнению с нанесенным металлоценовым катализатором, синтезированным с использованием МАО (1,73 кгПЭ/гкат). Показано, что повышение температуры предварительного прокаливания носителя снижает активность катализатора, практически не влияя на характеристики сополимера, что может быть использовано в полиолефиновой индустрии для управления важным параметром производительности нанесенного металлоценового катализатора полимеризации этилена1.



Влияние строения карбонильного компонента и состава катализатора на синтез оксиметиленовых эфиров – низкоуглеродных компонентов горюче-смазочных материалов
Аннотация
Показана принципиальная возможность получения экологичных компонентов горюче-смазочных материалов – оксиметиленовых эфиров – на базе отечественного сырья с использованием отечественного катализатора. Синтезы проводили путем конденсации формальдегида, высвобождающегося при ацидолизе его полимерных форм, со спиртами. Показано, что путем оптимизации параметров процесса синтеза можно добиться конверсии и выхода целевых продуктов на уровне не менее 60–70% при любом строении карбонильного компонента и составе катализатора. Показано, что снижение размера частиц и степени полимеризации параформальдегида, а также использование сухих типов катионообменных смол в качестве катализатора способствует увеличению не только скорости реакции, но и повышению максимально достижимой конверсии сырья.



Влияние кислотности каталитических систем на выход 1-бутанола в реакции самоконденсации этанола
Аннотация
Изучены закономерности превращения этанола в 1-бутанол в присутствии медьсодержащих катализаторов на основе различных носителей. Выявлено, что немодифицированные носители малоактивны в реакции самоконденсации этанола — конверсия исходного субстрата не превышала 4% при селективности не более 0,9%. Продемонстрировано влияние кислотности каталитических систем на их активность в превращении этанола. Методом ТПД-аммиака были обнаружены три основные области кислотности: низкая кислотность (значение десорбции аммиака менее 50 мкмоль аммиака/г), при котором выход 1-бутанола не превышает 2%; оптимальная область (значение десорбции аммиака 50–400 мкмоль аммиака/г) с выходом 1-бутанола до 28,5%; повышенная кислотность (значение десорбции аммиака более 400 мкмоль аммиака/г) — с выходом 1-бутанола 5–9%. Сравнительный анализ различных подходов к формированию катализаторов демонстрирует преимущество пропитки по влагоемкости, как наиболее перспективного метода.



Совместимость уреатных пластичных смазок с другими типами смазок
Аннотация
В работе представлена и апробирована методика оценки совместимости различных типов пластичных смазок, включающая проведение термической обработки механических смесей смазок (80°C в течение 24 ч) с последующим определением физико-химических свойств полученных композиций. Данная методика была использована для установления возможности совместного применения уреатных (мочевинных) смазок с литиевыми, кальциевыми, литий-кальциевыми, алюминиевыми и бентонитовыми смазками. Показано, что наиболее важным фактором совместимости является природа базовых масел: смешение смазок на синтетической и минеральной основах может приводить к значительному снижению температуры каплепадения (что создает риск вытекания из узлов трения), изменению коллоидной стабильности и предела прочности (что может потребовать проведения дополнительной оценки температурных характеристик и структурно-механических свойств смесей). Трибологическое поведение смесей уреатных смазок с другими смазками не претерпевает значительных изменений. Данный подход обеспечивает научно обоснованный выбор совместимых смазочных материалов и позволяет минимизировать риски при техническом обслуживании промышленного оборудования.


