Влияние кислотности каталитических систем на выход 1-бутанола в реакции самоконденсации этанола

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Изучены закономерности превращения этанола в 1-бутанол в присутствии медьсодержащих катализаторов на основе различных носителей. Выявлено, что немодифицированные носители малоактивны в реакции самоконденсации этанола — конверсия исходного субстрата не превышала 4% при селективности не более 0,9%. Продемонстрировано влияние кислотности каталитических систем на их активность в превращении этанола. Методом ТПД-аммиака были обнаружены три основные области кислотности: низкая кислотность (значение десорбции аммиака менее 50 мкмоль аммиака/г), при котором выход 1-бутанола не превышает 2%; оптимальная область (значение десорбции аммиака 50–400 мкмоль аммиака/г) с выходом 1-бутанола до 28,5%; повышенная кислотность (значение десорбции аммиака более 400 мкмоль аммиака/г) — с выходом 1-бутанола 5–9%. Сравнительный анализ различных подходов к формированию катализаторов демонстрирует преимущество пропитки по влагоемкости, как наиболее перспективного метода.

作者简介

R. Bagdatov

Institute of Petrochemical Synthesis named after A. V. Topchiev RAS

Email: bagdatov.ruslan@ips.ac.ru
г. Москва, 119991 Россия

A. Chistyakov

LLC 'MERIDIAN ECOSYSTEM'

Email: bagdatov.ruslan@ips.ac.ru
г. Краснодар, 350010 Россия

S. Nikolaev

Moscow State University named after M. V. Lomonosov, Faculty of Chemistry

Email: bagdatov.ruslan@ips.ac.ru
г. Москва, 119991 Россия

G. Konstantinov

Institute of Petrochemical Synthesis named after A. V. Topchiev RAS

编辑信件的主要联系方式.
Email: bagdatov.ruslan@ips.ac.ru
г. Москва, 119991 Россия

参考

  1. Tse T.J., Wiens D.J., Chicilo F., Purdy S.K., Reaney M.J. Value-added products from ethanol fermentation – A review // Fermentation. 2021. V. 7. № 4. ID 267. https://doi.org/10.3390/fermentation7040267
  2. Segal D., Bale A.S., Phillips L.J., Sasso A., Schlosser P.M., Starkey C., Makris S.L. Issues in assessing the health risks of n-butanol // J. Appl. Toxicol. 2020. V. 40. № 1. P. 72–86. https://doi.org/10.1002/jat.3820
  3. García-Hernández A.E., Segovia-Hernández J.G., Sánchez-Ramírez E., Zarazúa G.C., Araujo I.F.H., Quiroz-Ramírez J.J. Sustainable aviation fuel from butanol: a study in optimizing economic and environmental impact through process intensification // Chem. Eng. Process. — Process Intensif. 2024. V. 200. ID 109769. https://doi.org/10.1016/j.cep.2024.109769
  4. Torres G.M., Frauenlob R., Franke R., Börner A. Production of alcohols via hydroformylation // Catal. Sci. Technol. 2014. V. 5. № 1. P. 34–54. https://doi.org/10.1039/c4cy01131g
  5. Lin Z., Cong W., Zhang J. Biobutanol production from acetone–butanol–ethanol fermentation: developments and prospects // Fermentation. 2023. V. 9. № 9. ID 847. https://doi.org/10.3390/fermentation9090847
  6. Травень В.Ф. Органическая химия. М.: БИНОМ. Лаборатория знаний, 2015. 401 с.
  7. Николаев С.А., Чистяков А.В., Жарова П.А., Цодиков М.В., Кротова И.Н., Эзжеленко Д.И. Синергетический эффект золота и меди в превращении этанола в линейные α-спирты // Нефтехимия. 2016. Т. 56. № 5. С. 502–508. https://doi.org/10.7868/S0028242116050130
  8. [Nikolaev S.A., Chistyakov A.V., Zharova P.A., Tsodikov M.V., Krotova I.N., Ezzgelenko D.I. Synergistic effect of gold and copper in the catalytic conversion of ethanol to linear α-alcohols // Petrol. Chemistry. 2016. V. 56. № 5. P. 730–737. http://dx.doi.org/10.1134/S0965544116080120]
  9. Faba L., Cueto J., Portillo M.Á., Villanueva-Perales Á.L., Vidal-Barrero F., Ordóñez S. Understanding the formation of higher alcohols in the liquid-phase ethanol condensation over copper-loaded hydrotalcite-derived mixed oxides // Catal. Today. 2023. V. 423. ID 114297. https://doi.org/10.1016/j.cattod.2023.114297
  10. Lee J., Lin K.Y.A. Bio-butanol production on heterogeneous catalysts: a review // J. Taiwan Inst. Chem. Eng. 2024. V. 157. ID 105421. https://doi.org/10.1016/j.jtice.2024.105421
  11. Choi H., Han J., Lee J. Renewable butanol production via catalytic routes // Int. J. Environ. Res. Public Health. 2021. V. 18. № 22. ID 11749. https://doi.org/10.3390/ijerph182211749
  12. Dai J., Zhang H. Recent advances in selective C–C bond coupling for ethanol upgrading over balanced Lewis acid-base catalysts // Sci. China Mater. 2019. V. 62. P. 1642–1654. https://doi.org/10.1007/s40843-019-9454-x
  13. Li S., Han X., An H., Zhao X., Wang Y. Повышение стабильности Ni/TiO2-катализаторов в реакции конденсации этанола Гербе: влияние второго металлического компонента // Кинетика и катализ. 2021. Т. 62. № 5. С. 581–590. https://doi.org/10.31857/S0453881121050026
  14. [Li S., Han X., An H., Zhao X., Wang Y. Improving the catalytic stability of Ni/TiO2 for ethanol Guerbet condensation: influence of second metal component // Kinet. Catal. 2021. V. 62. № 5. P. 632–640. https://doi.org/10.1134/S0023158421050025]
  15. Wu X., Fang G., Tong Y., Jiang D., Liang Z., Leng W., Liu L., Tu P., Wang H., Ni J., Li X. Catalytic upgrading of ethanol to n-butanol: Progress in catalyst development // ChemSusChem. 2018. V. 11. № 1. P. 71–85. https://doi.org/10.1002/cssc.201701590
  16. Николаева С.А., Багдатов Р.А., Чистяков А.В., Цодиков М.В. Влияние модификатора M (M = Ca, Sr, Ba) на селективность катализаторов Pd–Cu/Mo/Al2O3 в конверсии этанола в бутанол-1 // Кинетика и катализ. 2024. Т. 65. № 6. С. 646–658. https://doi.org/10.31857/S0453881124060055
  17. Molina-Ramírez S., Cortés-Reyes M., Herrera C., Larrubia M.A., Alemany L.J. Catalytic upgrading of ethanol to n-butanol over a novel Ca-Fe modified mixed oxide Mg-Al catalyst from hydrotalcite-base precursor // Catal. Today. 2022. V. 394‒396. P. 365–375. https://doi.org/10.1016/j.cattod.2021.07.029
  18. Chistyakov A.V., Zharova P.A., Nikolaev S.A., Tsodikov M.V. Direct Au-Ni/Al2O3 catalysed cross-condensation of ethanol with isopropanol into pentanol-2 // Catal. Today. 2017. V. 279. Pt. 1. P. 124–132. https://doi.org/10.1016/j.cattod.2016.06.016
  19. Николаев С.А., Чистяков А.В., Чистякова П.А., Эзжеленко Д.И., Либерман Е.Ю., Конькова Т.В., Цодиков М.В. Влияние носителя на формирование и активность золотосодержащих катализаторов конверсии этанола в бутанол // Нефтехимия. 2021. Т. 61. № 4. С. 504–519. http://dx.doi.org/10.31857/S0028242121040067
  20. [Nikolaev S.A., Chistyakov A.V., Chistyakova P.A., Ezzhelenko D.I., Liberman E.Y., Konkova T.V., Tsodikov M.V. Effects of support on the formation and activity of gold catalysts for ethanol conversion to butanol // Petrol. Chemistry. 2021. V. 61. № 7. P. 748–761. http://dx.doi.org/10.1134/s0965544121050145]
  21. Siqueira M.R., Perrone O.M., Metzker G., de Oliveira Lisboa D.C., Thomeo J.C., Boscolo M. Highly selective 1-butanol obtained from ethanol catalyzed by mixed metal oxides: Reaction optimization and catalyst structure behavior // Mol. Catal. 2019. V. 476. ID 110516. https://doi.org/10.1016/j.mcat.2019.110516
  22. Rubio-Rueda J.A., Quevedo-Hernandez J.P., López M.B., Galindo J.F., Hincapié-Triviño G. Mg/Al and Cu-Mg/Al mixed oxides derived from hydrotalcites as catalysts to produce 1-butanol from ethanol // Mol. Catal. 2024. V. 569. Art. ID 114528. https://doi.org/10.1016/j.mcat.2024.114528
  23. Hanspal S., Young Z.D., Prillaman J.T., Davis R.J. Influence of surface acid and base sites on the Guerbet coupling of ethanol to butanol over metal phosphate catalysts // J. Catal. 2017. V. 352. P. 182–190. https://doi.org/10.1016/j.jcat.2017.04.036
  24. Pinzón M., Cortés-Reyes M., Herrera C., Larrubia M.Á., Alemany L.J. Ca-based bifunctional acid-basic model-catalysts for n-butanol production from ethanol condensation // Biofuels Bioprod. Biorefin. 2021. V. 15. № 1. P. 218–230. https://doi.org/10.1002/bbb.2155
  25. Olcese R., Bettahar M.M. Thermodynamics conditions for Guerbet ethanol reaction // MATEC Web of Conf. 2013. V. 3. ID 01060. https://doi.org/10.1051/matecconf/20130301060
  26. Ohligschläger A., van Staalduinen N., Cormann C., Mühlhans J., Wurm J., Liauw M.A. The Guerbet reaction network–a ball-in-a-maze-game or: why Ru-MACHO-BH is poor in coupling two ethanol to n-butanol // Chemistry‒Methods. 2021. V. 1. № 4. P. 181–191. http://dx.doi.org/10.1002/cmtd.202100026
  27. Frolich K., Malina J., Hájek M., Mück J., Kocík J. The utilization of bio-ethanol for production of 1-butanol catalysed by Mg–Al mixed metal oxides enhanced by Cu or Co // Clean Techn. Environ. Policy. 2024. V. 26. № 1. P. 79–92. https://doi.org/10.1007/s10098-023-02581-5
  28. Kowalska-Kuś J., Held A., Nowińska K., Góra-Marek K. LTA zeolites as catalysts for transesterification of glycerol with dimethyl carbonate // Fuel. 2024. V. 362. Art. ID 130757. https://doi.org/10.1016/j.fuel.2023.130757
  29. Chen W., Song G., Lin Y., Qiao J., Wu T., Yi X., Kawi S. Synthesis and catalytic performance of Linde-type A zeolite (LTA) from coal fly ash utilizing microwave and ultrasound collaborative activation method // Catal. Today. 2022. V. 397‒399. P. 407–418. https://doi.org/10.1016/j.cattod.2021.07.022
  30. Mittal H., Al Alili A., Alhassan S.M., Susantyoko R.A. Zeolites and superporous hydrogels-based hybrid composites as solid desiccants to capture water vapors from humid air // Micropor. Mesopor. Mater. 2022. V. 342. ID 112116. https://doi.org/10.1016/j.micromeso.2022.112116
  31. Seejandee P., Osakoo N., Sereerattanakorn P., Krukkratoke P., Keawkumay C., Pansakdanon C., Wittayakun J., Chanlek N., Deekamwong K., Prayoonpokarach S. Comparison of potassium catalysts on zeolite sodium A and X in transesterification of palm oil and active species specification // Heliyon. 2024. V. 10. № 16. ID e35975. https://doi.org/10.1016/j.heliyon.2024.e35975
  32. Ishitani H., Furiya Y., Kobayashi S. Continuous-flow synthesis using a column reactor packed with heterogeneous catalysts: A convenient production of nitroolefins by using amino-functionalized silicagel // Bioorg. Med. Chem. 2017. V. 25. № 23. P. 6229–6232. https://doi.org/10.1016/j.bmc.2017.04.017
  33. Chistyakov A.V., Nikolaev S.A., Zharova P.A., Tsodikov M.V., Manenti F. Linear α-alcohols production from supercritical ethanol over Cu/Al2O3 catalyst // Energy. 2019. V. 166. P. 569–576. https://doi.org/10.1016/j.energy.2018.10.071
  34. Dasireddy V.D., Štefančič N.S., Likozar B.Z. Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol // J. CO2 Util. 2018. V. 28. P. 189–199. https://doi.org/10.1016/j.jcou.2018.09.002
  35. Nikolaev S.A., Tsodikov M.V., Chistyakov A.V., Zharova P.A., Ezzgelenko D.I. The activity of mono- and bimetallic gold catalysts in the conversion of sub and supercritical ethanol to butanol // J. Catal. 2019. V. 369. P. 501–517. https://doi.org/10.1016/j. jcat.2018.11.017
  36. Phung T.K. Copper-based catalysts for ethanol dehydrogenation and dehydrogenative coupling into hydrogen, acetaldehyde and ethyl acetate // Int. J. Hydrogen Energy. 2022. V. 47. № 100. P. 42234–42249. https://doi.org/10.1016/j.ijhydene.2021.11.253
  37. Keyvanloo K., Horton J.B., Hecker W.C., Argyle M.D. Effects of preparation variables on an alumina-supported FeCuK Fischer–Tropsch catalyst // Catal. Sci. Technol. 2014. V. 4. № 12. P. 4289–4300. http://dx.doi.org/10.1039/C4CY00510D
  38. Golbad S., Khoshnoud P., Abu-Zahra N. Synthesis of 4A zeolite and characterization of calcium-and silver-exchanged forms // J. Miner. Mater. Charact. Eng. 2017. V. 5. № 5. P. 237‒251. http://dx.doi.org/10.4236/jmmce.2017.55020
  39. Upasen S., Sarunchot G., Srira-ngam N., Poo-arporn Y., Wattanachai P., Praserthdam P., Ngaotrakanwiwat P., Panpranot J., Soisuwan S. What if zeolite LTA4A and zeolite LTA5A used as Nickel catalyst supports for recycling carbon dioxide to green fuel methane // J. CO2 Util. 2022. V. 55. ID 101803. https://doi.org/10.1016/j.jcou.2021.101803
  40. Drönner J., Bijerch K., Hausoul P., Palkovits R., Eisenacher M. High-temperature-treated LTX zeolites as heterogeneous. Catalysts for the hock cleavage // Catalysts. 2023. V. 13. № 1. ID 202. https://doi.org/10.3390/catal13010202
  41. Горшунова В.П., Хаустова М.М. Исследование сорбции аммиака силикагелями разной пористости // Вестник Воронежского государственного технического университета. 2010. Т. 6. № 11. С. 19–21.
  42. Tanaka R., Ogino I., Mukai S.R. Synthesis of Mg–Al mixed oxides with markedly high surface areas from layered double hydroxides with organic sulfonates // ACS Omega. 2018. V. 3. № 12. P. 16916–16923. http://dx.doi.org/10.1021/acsomega.8b02557
  43. Wu Y., Li C., Bai J., Wang J. The fabrication of porous 4A-zeolite-supported Ag nanoparticles catalysts and its catalytic activity for styrene epoxidation // Results Phys. 2017. V. 7. P. 1616–1622. https://doi.org/10.1016/j.rinp.2017.04.035
  44. Ikeda A., Abe C., Matsuura W., Hasegawa Y. Development of methanol permselective FAU-type zeolite membranes and their permeation and separation performances // Membranes. 2021. V. 11. № 8. ID 627. https://doi.org/10.3390/membranes11080627
  45. Дубинин М.М. Физико-химические основы сорбционной техники. М.; Л.: Госхимтехиздат, 1932. 382 c.
  46. Fernández-Ropero A.J., Zawadzki B., Kowalewski E., Pieta I.S., Krawczyk M., Matus, K., Lisovytskiy D., Śrębowata A. Continuous 2-methyl-3-butyn-2-ol selective hydrogenation on Pd/γ-Al2O3 as a green pathway of vitamin A precursor synthesis // Catalysts. 2021. V. 11. № 4. ID 501. https://doi.org/10.3390/catal11040501
  47. Yan T., Bing W., Xu M., Li Y., Yang Y., Cui G., Yang L., Wei M. Acid–base sites synergistic catalysis over Mg–Zr–Al mixed metal oxide toward synthesis of diethyl carbonate // RSC Adv. 2018. V. 8. № 9. P. 4695–4702. https://doi.org/10.1039/C7RA13629C
  48. Moura P.A.S., Ferracine E.D.S., Rodríguez-Aguado E., Maia D.A.S., Melo D.C., Valencia S., Cardoso D., Rey F., Bastos-Neto M., Rodríguez-Castellon E., Azevedo D.C.S. Assessment of the stability of LTA zeolites under natural gas drying TSA conditions // Catal. Today. 2024. V. 427. ID 114410. https://doi.org/10.1016/j.cattod.2023.114410
  49. Gordina N.E., Borisova T.N., Klyagina K.S., Astrakhantseva I.A., Ilyin A.A., Rumyantsev R.N. Investigation of NH3 desorption kinetics on the LTA and SOD zeolite membranes // Membranes. 2022. V. 12. № 2. ID 147. https://doi.org/10.3390/membranes12020147
  50. Лидин Р.А., Молочко В.А., Андреева Л.Л. Химические свойства неорганических веществ. М.: ИНФРА-М, 2019. 480 c.
  51. Jabłońska M., Palkovits R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour — Recent trends and open challenges // Appl. Catal. B: Environ. 2016. V. 181. P. 332–351. https://doi.org/10.1016/j.apcatb.2015.07.017
  52. Hung C.M. Cordierite-supported Pt–Pd–Rh ternary composite for selective catalytic oxidation of ammonia // Powder Technol. 2010. V. 200. № 1–2. P. 78–83. https://doi.org/10.1016/j.powtec.2010.02.014
  53. Fabrizioli P., Bürgi T., Baiker A. Environmental catalysis on iron oxide–silica aerogels: Selective oxidation of NH3 and reduction of NO by NH3 // J. Catal. 2001. V. 206. № 1. P. 143–154. 10.1006/jcat.2001.3475' target='_blank'>https://doi: 10.1006/jcat.2001.3475
  54. Scheuer A., Votsmeier M., Schuler A., Gieshoff J., Drochner A., Vogel H. NH3-Slip catalysts: experiments versus mechanistic modelling // Top. Catal. 2009. V. 52. P. 1847–1851. http://dx.doi.org/10.1007/s11244-009-9351-9
  55. Chmielarz L., Jabłońska M., Strumiński A., Piwowarska Z., Węgrzyn A., Witkowski S., Michalik M. Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals // Appl. Catal. B: Environ. 2013. V. 130‒131. P. 152–162. https://doi.org/10.1016/j.apcatb.2012.11.004
  56. Liang C., Li X., Qu Z., Tade M., Liu S. The role of copper species on Cu/γ-Al2O3 catalysts for NH3–SCO reaction // Appl. Surf. Sci. 2012. V. 258. № 8. P. 3738–3743. https://doi.org/10.1016/j.apsusc.2011.12.017
  57. Lenihan S., Curtin T. The selective oxidation of ammonia using copper-based catalysts: The effects of water // Catal. Today. 2009. V. 145. № 1–2. P. 85–89. http://dx.doi.org/10.1016/j.cattod.2008.06.017
  58. Reed J.L. Hard and soft acids and bases: structure and process / J. Phys. Chem. A. 2012. V. 116. № 26. P. 7147–7153. https://doi.org/10.1021/jp301812j

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025