A modified tipping-curve method in the comparative study of sites for space communications and radio astronomy systems in the millimeter wavelength range

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Measurements of atmospheric absorption in transparency windows in the range of millimeter waves (MMW) have been carried out. A modification tipping-curve method is proposed that allows measuring atmospheric absorption, the average temperature of the atmosphere and separating the contributions of atmospheric moisture and the droplet fraction of clouds by single-wave measurements in the MMV range with clouds up to 2.5 points (without precipitation). The possibility of detecting and determining the water content of clouds at the zenith in real time is shown. The annual course of atmospheric moisture content and atmospheric absorption at a wavelength of 3 mm (2019 and 2020–2021) for the Karadag landfill. The previously obtained results of a comparative analysis of the Karadag landfill and the Suffa plateau are confirmed. The possibility of using the Karadag landfill for the installation of space communication systems and measurements of space sources in the MMV range is shown.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Bubukin

N. I. Lobachevsky State University of Nizhny Novgorod

Хат алмасуға жауапты Автор.
Email: bubn@nirfi.unn.ru

Radiophysical Research Institute

Ресей, Nizhny Novgorod

I. Rakut

N. I. Lobachevsky State University of Nizhny Novgorod; Nizhny Novgorod State Technical University name after R. E. Alekseev

Email: bubn@nirfi.unn.ru

Radiophysical Research Institute

Ресей, Nizhny Novgorod; Nizhny Novgorod

M. Agafonov

N. I. Lobachevsky State University of Nizhny Novgorod; Nizhny Novgorod State Technical University name after R. E. Alekseev

Email: bubn@nirfi.unn.ru

Radiophysical Research Institute

Ресей, Nizhny Novgorod; Nizhny Novgorod

A. Pankratov

N. I. Lobachevsky State University of Nizhny Novgorod; Nizhny Novgorod State Technical University name after R. E. Alekseev; Institute for Physics of Microstructures, Russian Academy of Sciences

Email: bubn@nirfi.unn.ru

Radiophysical Research Institute

Ресей, Nizhny Novgorod; Nizhny Novgorod; Academicheskaya Str., 7, Nizhny Novgorod, 603087

T. Gorbunova

Institute for Biology of the South Seas n. a. A. O. Kovalevsky, Russian Academy of Sciences

Email: bubn@nirfi.unn.ru
Ресей, Nakhimov Ave., 2, Sevastopol, 299011

R. Gorbunov

Institute for Biology of the South Seas n. a. A. O. Kovalevsky, Russian Academy of Sciences

Email: bubn@nirfi.unn.ru
Ресей, Nakhimov Ave., 2, Sevastopol, 299011

V. Bubukin

Nizhny Novgorod State Technical University name after R. E. Alekseev

Email: bubn@nirfi.unn.ru
Ресей, Nizhny Novgorod

Әдебиет тізімі

  1. Агафонов М. И., Бубнов Г. М., Бубукин И. Т. и др. // Астрофизический бюллетень. 2018. Т. 73. № 3. С. 412.
  2. Бубукин И. Т., Ракуть И. В., Агафонов М. И. и др. // ЖЭТФ. 2019. Т. 156. № 1. С. 43.
  3. Бубукин И. Т., Агафонов М. И., Ракуть И. В. и др. // Изв. вузов. Радиофизика. 2019. Т. 62. № 7–8. С. 630.
  4. Бубукин И. Т., Ракуть И. В., Агафонов М. И. и др. // Астрономический журн. 2021. Т. 98. № 7. С. 581. doi: 10.31857/S0004629921080016.
  5. http://asc-lebedev.ru/index.php?dep=16&suffa=3
  6. Башаринов А. Е., Гурвич А. С., Егоров С. Т. Радиоизлучение Земли как планеты. М.: Наука, 1974.
  7. Кисляков А. Г., Станкевич К. С. // Изв. вузов. Радио-физика. 1967. Т. 10. № 9–10. С. 1244.
  8. Степаненко В. Д., Щукин Г. Г., Бобылев Л. П., Матросов С. Ю. Радиотеплолокация в метеорологии. Л.: Гидрометеоиздат, 1987.
  9. Бубукин И. Т., Станкевич К. С. // Успехи совр. радиоэлектроники. 2006. № 11. С. 39.
  10. Бубукин И. Т., Ракуть И. В., Агафонов М. И. и др. // Изв. вузов. Радиофизика. 2022. Т. 65. № 10. С. 791. doi: 10.52452/00213462_2022_65_10_791
  11. Ulich B. L. // Astrophys. Lett. 1980. V. 21. P. 21.
  12. Rasenkrans P. W. J. // Qualitative Spectroscopy and Radiation Transfer. 1988. V. 39. № 4. P. 287.
  13. Катков В. Ю. // РЭ. 1997. Т. 42. № 12. С. 1441.
  14. Bubnov G., Vdovin V. F., Zemlyanukha P. M. et al. // EPJ Web of Conf. 2018. V.195. Article No. 09002.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dependences of the difference between the antenna and brightness temperatures of the atmosphere on the zenith angle for a 7° diagram and three absorption values ​​of 0.1 (1), 0.3 (2) and 0.9 (3).

Жүктеу (14KB)
3. Fig. 2. Average monthly atmospheric moisture content Q with cloudiness less than 2.5 points for Suffa for 1981–1991 (1), for the Karadag test site from August to December 2019 [4] (2), from August to December 2020 (3), from January to August 2021 (4). The right scale is measurements of atmospheric absorption in the 3 mm range for the Karadag test site (2–4), the left scale is the integral moisture content for Suffa (1) and Karadag (2–4).

Жүктеу (19KB)
4. Fig. 3. Histogram of the distribution of integral atmospheric moisture content values ​​Q (g/cm2), obtained on March 7–8, 2021 at a wavelength of 3 mm.

Жүктеу (11KB)
5. Fig. 4. Atmospheric moisture content Q (1), cloud water content W (2) based on measurements at a wavelength of 3 mm, and the proportion of the sky covered by clouds based on meteorological data Nоб (3), obtained on March 7–8, 2021.

Жүктеу (20KB)
6. Fig. 5. Surface T0 (1) and average Tcp (2) atmospheric temperatures based on measurements taken on March 7–8, 2021, at a wavelength of 3 mm.

Жүктеу (16KB)
7. Fig. 6. Water vapor layer thickness hW(1) and atmospheric surface temperature T0 (2) based on measurements taken on March 7–8, 2021, at a wavelength of 3 mm.

Жүктеу (19KB)

© Russian Academy of Sciences, 2024