Abstract
Coatings obtained by high-power impulse magnetron sputtering (HIPIMS) were tested using a 64% Ti–16% C–14% Ni–6% Al target (42.5 at % Ti, 42.5 at % C, 7.5 at % Ni, 7.5 at % Al). The microstructure and composition of the coatings were studied using scanning electron microscopy, optical emission spectroscopy of a glow discharge, and X-ray phase analysis. Coatings were studied in terms of their hardness, modulus of elasticity, elastic recovery, resistance to elastic fracture strain, resistance to plastic deformation, friction coefficient and friction-slip wear resistance, resistance to shock-dynamic loading, as well as oxidation resistance. Field tests of coatings on the cutting tool were carried out. Properties of the coatings obtained by direct current and high-power pulse mode were compared. The results showed that the Ti–C–Ni–Al coatings had a dense homogeneous structure, a hardness of 12–26 GPa, an elastic modulus of 143–194 GPa, an elastic recovery of 66–90%, a low friction coefficient of 0.24–0.4, and high oxidation resistance at 800°C. The coating deposited according to the optimal regime confirmed its high practical efficiency during full-scale tests, reducing the cutting tool wear by ~25%.