Identification of species affiliation and determination of fish eggs adulteration by vibrational spectroscopy and digital colorometry methods

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The efficiency of combining spectroscopic and chemometric methods for identification and classification of salmon, sturgeon and particle fish caviar, as well as for differentiation of natural and imitated samples, has been shown. Analysis of infrared spectra in the near and middle regions made it possible to identify the peculiarities of chemical composition and structure of the samples under study, providing reliable differentiation of natural and imitated caviar. The use of Raman spectroscopy helped to identify characteristic spectral differences related to protein-lipid composition and the presence of carotenoids, which allowed to clearly differentiate the samples. The application of principal component analysis (PCA), hierarchical cluster analysis (HCA) and formal independent modeling of class analogies (SIMCA) algorithms improved classification accuracy, providing separation of samples by fish species. Digital colorometry based on the analysis of optical characteristics in the UV and IR ranges showed to be an affordable and reliable method that can be an alternative to more expensive spectroscopic approaches.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Amelin

All-Russian State Centre for Quality and Standardization of Animal Drugs and Feeds; Alexander Grigorievich and Nikolai Grigorievich Stoletov Vladimir State University

Хат алмасуға жауапты Автор.
Email: amelinvg@mail.ru
Ресей, Moscow; Vladimir

O. Emelyanov

Alexander Grigorievich and Nikolai Grigorievich Stoletov Vladimir State University

Email: amelinvg@mail.ru
Ресей, Vladimir

A. Khrushchev

Alexander Grigorievich and Nikolai Grigorievich Stoletov Vladimir State University

Email: amelinvg@mail.ru
Ресей, Vladimir

A. Tretyakov

All-Russian State Centre for Quality and Standardization of Animal Drugs and Feeds

Email: amelinvg@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. ГОСТ 18173-2004. Икра лососевая зернистая баночная. Технические условия. М.: Изд-во стандартов. 2004. 10 с.
  2. Ситникова Н.В. Идентификация и фальсификация икры в России // Ученые записки Санкт-Петербургского имени В.Б. Бобкова филиала Российской таможенной академии. 2007. № 2(28). С. 84.
  3. Калюжная Т.В., Орлова Д.А., Родак Г.Н. Идентификация икры лососевых пород рыб с помощью полимеразной цепной реакции с наблюдением в реальном времени // Международный вестник ветеринарии. 2021. № 4. С. 88. https://doi.org/10.52419/issn2072-2419.2021.4.88
  4. Santiago-Felipe S., Tortajada-Genaro L.A., Puchades R., Maquieira A. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis // Anal. Chim. Acta. 2014. V. 811. P. 81. https://doi.org/10.1016/j.aca.2013.12.017
  5. Taboada L., Sanchez A., Sotelo C. G. A new real-time PCR method for rapid and specific detection of ling (Molva molva) // Food Chem. 2017. V. 228. P. 469. https://doi.org/ 10.1016/j.foodchem.2017.01.117
  6. Hu Q., Pan Y., Xia H., Yu K., Yao Y., Guan F. Species identification of caviar based on multiple DNA barcoding // Molecules. 2023. V. 28. Article 5046. https://doi.org/10.3390/molecules28135046
  7. Birstein V.J., Doukakis P., Sorkin B., Desalle R. Population aggregation analysis of three caviar producing species of sturgeons and implications for the species identification of black caviar // Conserv. Biol. 1998. V. 12. № 4. P. 766. https://doi.org/10.1111/j.1523-1739.1998.97081.x
  8. Абрамова Л.С., Козин А.В., Гусева Е.С. Проблема фальсификации зернистой икры лососевых рыб и пути решения // Пищевые системы. 2022. Т. 5. № 4. С. 319. https://doi.org/10.21323/2618-9771-2022-5-4-319-326
  9. Шаока З.А.Ч., Большаков Д.С., Амелин В.Г. Использование смартфона в химическом анализе // Журн. аналит. химии. 2023. Т. 78. № 4. С. 317. (Shogah Z.A.Ch., Bol'shakov D.S., Amelin V.G. Using a smartphone in chemical analysis // J. Anal. Chem. 2023. V. 78. №. 4. P. 317.) https://doi.org/10.31857/S0044450223030131
  10. Böck F.C., Helfer G.A., da Costa A.B., Dessuy M.B., Ferrao M.F. PhotoMetrix and colorimetric image analysis using smartphones // J. Chemometrics. 2020. V. 34. Article 12. https://doi.org/10.1002/cem.3251
  11. Helfer G.A., Magnus V.S., Böck F.C., Teichmann A., Ferrãoa M.F., da Costa A.B. PhotoMetrix: An application for univariate calibration and principal components analysis using colorimetry on mobile devices // J. Braz. Chem. Soc. 2017. V. 28. № 2. P. 328. https://doi.org/10.5935/0103-5053.20160182
  12. Амелин В.Г., Емельянов О.Э., Третьяков А.В., Гергель М.А., Зайцева Е.В. Идентификация и установление фальсификации икры лососевых рыб методами ПЦР, ИК-спектроскопии и цифровой цветометрии // Журн. аналит. химии. 2025. Т. 80. № 5. С. 459.
  13. Емельянов О.Э., Амелин В.Г., Третьяков А.В. Идентификация куркумы и установление фальсификации методами цифровой цветометрии и ближней ИК-спектроскопии // Журн. аналит. химии. 2025. Т. 80. № 6. С. 533.
  14. Johnson J.B., Walsh K.B., Naiker M., Ameer K. The use of infrared spectroscopy for the quantification of bioactive compounds in food: A Review // Molecules. 2023. V. 28. № 7. Article 3215. https://doi.org/10.3390/molecules28073215

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Raman spectra of (a) natural (5–15) and (b) simulated (1–4, 16, 1I–6I) red caviar.

Жүктеу (185KB)
3. Fig. 2. PCA and HCA plots for natural and simulated red caviar.

Жүктеу (124KB)
4. Fig. 3. SIMCA plot for refining group boundaries between natural and simulated red caviar samples (significance level 0.05).

Жүктеу (79KB)
5. Fig. 4. Raman spectra of (a) simulated (26–30), natural (31) black caviar and (b) caviar of cyprinid fish species (17–25).

Жүктеу (160KB)
6. Fig. 5. PCA and HCA plots for simulated (26–30) and natural (31) black caviar samples.

Жүктеу (96KB)
7. Fig. 6. PCA plot for caviar of different fish species.

Жүктеу (108KB)
8. Fig. 7. SIMCA plots for refining group boundaries between samples of natural red caviar from different species (significance level 0.05).

Жүктеу (331KB)
9. Fig. 8. Near-infrared spectra for different types of caviar. Spectrum numbers correspond to sample numbers in Table 1.

Жүктеу (309KB)
10. Fig. 9. Mid-infrared spectra for different types of caviar. Spectrum numbers correspond to sample numbers in Table 1.

Жүктеу (228KB)
11. Fig. 10. SIMCA plot for refining group boundaries between natural and simulated red caviar samples (significance level 0.05): (a) near-IR, (b) mid-IR regions.

Жүктеу (161KB)
12. Fig. 11. PCA and HCA plots for simulated (26–30) and natural (31) black caviar samples: (a) near-IR, (b) mid-IR region.

Жүктеу (173KB)
13. Fig. 12. PCA plot for caviar of different fish species: (a) near-IR, (b) mid-IR region.

Жүктеу (107KB)
14. Fig. 13. SIMCA plot for refining group boundaries between natural and simulated red caviar samples (significance level 0.05) under (a) UV and (b) IR irradiation.

Жүктеу (147KB)
15. Fig. 14. PCA and HCA plots for simulated (26–30) and natural (31) black caviar samples under (a) UV and (b) IR irradiation.

Жүктеу (196KB)
16. Fig. 15. PCA plots for caviar of different fish species under (a) UV and (b) IR irradiation.

Жүктеу (91KB)

© Russian Academy of Sciences, 2025