High-resolution voltammetric determination of carmoisine, allura red and brilliant blue on their simultaneous presence in food products

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

A voltammetric sensor is developed based on a carbon fiber planar electrode modified with a nanocomposite for the simultaneous determination of the synthetic food dyes carmoisine (Car), allura red (AR), and brilliant blue (BB). The nanocomposite includes nickel oxide nanoparticles synthesized using a strawberry leaf extract, graphene nanoplates and the cationic surfactant cetyltrimethylammonium bromide. The modified electrode exhibits enhanced signal responses for all three colorants at an improved resolution. Electrochemical oxidation proceeds irreversibly, governed by surface-controlled processes in the cases of Car and BB, and by diffusion-controlled processes in the case of AR. The proposed method enables the simultaneous voltammetric determination of Car, AR, and BB using the developed sensor. The limits of detection for Car, AR and BB are 0.05, 0.08 and 0.15 μM, respectively. Under the selected conditions for recording differential pulse voltammetry signals, real samples including soft drinks, syrup, and marshmallows were successfully analyzed, yielding accuracy values ranging from 95 to 104%.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Khamzina

Ural State University of Economics

Email: sny@usue.ru
Ресей, Ekaterinburg

M. Bukharinova

Ural State University of Economics

Email: sny@usue.ru
Ресей, Ekaterinburg

N. Stozhko

Ural State University of Economics

Хат алмасуға жауапты Автор.
Email: sny@usue.ru
Ресей, Ekaterinburg

V. Kolotygina

Ural State University of Economics

Email: sny@usue.ru
Ресей, Ekaterinburg

Әдебиет тізімі

  1. Bişgin A.T. Simultaneous extraction and determination of allura red (E129) and brilliant blue FCF (E133) in foodstuffs by column solid-phase spectrophotometry // J. AOAC Int. 2019. V. 102. № 1. P. 181.
  2. Barciela P., Perez-Vazquez A., Prieto M.A. Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation // Food Chem. Toxicol. 2023. V. 178. Article 113935.
  3. Технический регламент Таможенного союза ТР ТС 029/2012 “Требования безопасности пищевых добавок, ароматизаторов и технологических вспомогательных средств”.
  4. Heidarizadi E., Tabaraki R. Simultaneous spectrophotometric determination of synthetic dyes in food samples after cloud point extraction using multiple response optimizations // Talanta. 2016. V. 148. P. 237.
  5. Deeb A.A., Abuothman M., Hailat M., Abuyaman O., Albizreh R.K. Analyzing the presence of ten synthetic colors in selected food and drink samples using ultra high-performance liquid chromatography diode array detection analysis // Acta Chromatogr. 2024. V. 36. P. 363.
  6. Rukosueva E.A., Aliyarova G.R., Tikhomirova T.I., Apyari V.V., Nesterenko P.N. Simultaneous Determination of Synthetic Food Dyes Using a Single Cartridge for Preconcentration and Separation Followed by Photometric Detection // Int. J. Anal. Chem. 2020. V. 2020. Article 2409075.
  7. Большаков Д.С., Амелин В.Г. Метод капиллярного электрофореза в оценке качества и безопасности продуктов питания // Журн. аналит. химии. 2023. Т. 78. № 7. С. 579. (Bolshakov D.S., Amelin V.G. Capillary electrophoresis in assessing the quality and safety of foods // J. Anal. Chem. 2023. V. 78. P. 815.
  8. Laptev A.Y., Rozhmanova N.B., Tikhomirova T.I., Lanin S.N., Nesterenko P.N. Adsorption of synthetic dyes under the conditions of capillary zone electrophoresis // Moscow Univ. Chem. Bull. 2021. V. 76. № 2. P. 127.
  9. Sierra-Rosales P., Toledo-Neira C., Squella J.A. Electrochemical determination of food colorants in soft drinks using MWCNT-modified GCEs // Sens. Actuators B. 2017. V. 240. P. 1257.
  10. Darabi R., Shabani-Nooshabadi M., Karimi-Maleh H., Gholami A. The potential of electrochemistry for one-pot and sensitive analysis of patent blue V, tartrazine, acid violet and ponceau 4R in foodstuffs using IL/Cu-BTC MOF modified sensor // Food Chem. 2022. V. 368. Article 130811.
  11. Darabi R., Shabani-Nooshabadia M. NiFe2O4-rGO/ionic liquid modified carbon paste electrode: An amplified electrochemical sensitive sensor for determination of sunset yellow in the presence of tartrazine and allura red // Food Chem. 2021. V. 339. Article 127841.
  12. Ion B.-C., van Staden J.K.F, Georgescu-State R., Comnea-Stancu I.R. An ultrasensitive electrochemical platform based on copper oxide nanoparticles and poly (crystal violet) for the detection of brilliant blue FCF from soft drinks // Food Chem. 2024. V. 437. Article 137751.
  13. Chebotarev A.N., Pliuta K.V., Snigur D.V. Determination of carmoisine onto carbon-paste electrode modified by silica impregnated with cetylpyridinium chloride // ChemistrySelect. 2020. V. 5. P. 3688.
  14. Зиятдинова Г.К., Козлова Е.В., Зиганшина Э.Р., Будников Г.К. Электрохимическое окисление сиреневого альдегида на ПАВ-модифицированном электроде // Уч. записки Казанского ун-та. Серия естеств. науки. 2014. № 4. С. 29.
  15. Stozhko N.Yu., Bukharinova M.A., Khamzina E.I., Tarasov A.V., Sokolkov S.V. Film carbon veil-based electrode modified with Triton X-100 for nitrite determination // Chemosensors. 2020. V. 8. № 3. Article 78.
  16. Ziyatdinova G., Gimadutdinova L., Bychikhina D. Voltammetric sensors based on the mixed metal oxide manoparticles for food dye determination // Eng. Proc. 2024. V. 82. Article 61.
  17. Wang M., Zhao J. A facile method used for simultaneous determination of Ponceau 4R, Allura Red and Tartrazine in alcoholic beverages // J. Electrochem. Soc. 2015. V. 162. № 6. P. H321.
  18. Brainina Kh., Stozhko N., Bukharinova M., Khamzina E., Vidrevich M. Potentiometric method of plant microsuspensions antioxidant activity determination // Food Chem. 2019. V. 278. P. 653.
  19. Akkapinyo C., Subannajui K., Poo-arporn Y., Poo-arporn R.P. Disposable electrochemical sensor for food colorants detection by reduced graphene oxide and methionine film modified screen printed carbon electrode // Molecules. 2021. V. 26. Article 2312.
  20. Nezhad H.M., Shahidi S.A., Bijad M. Fabrication of a nanostructure voltammetric sensor for carmoisine analysis as a food dye additive // Anal. Bioanal. Electrochem. 2018. V. 10. P. 220.
  21. Basavapura Ravikumar S., Prasanna S.B., Shivamurthy S.A., Shadakshari S., Nagaraja B.M., Rajabathar J.R., Al-lohedan H.A., Arokiyaraj S. Individual and simultaneous electrochemical detection of allura red and acid blue 9 in food samples using a novel La2YCrO6 double perovskite decorated on HLNTs as an electrocatalyst // ACS Omega. 2024. V. 9. P. 2568.
  22. Lipskikh O.I., Korotkova E.I., Barek J., Vyskocil V., Saqib M., Khristunova E.P. Simultaneous voltammetric determination of brilliant blue FCF and tartrazine for food quality control // Talanta. 2020. V. 218. Article 121136.
  23. Khan K.A., Shah A., Nisar J. Electrochemical detection and removal of brilliant blue dye via photocatalytic degradation and adsorption using phyto-synthesized nanoparticles // RSC Adv. 2024. V. 14. P. 2504.
  24. Bukharinova M.A., Khamzina E.I., Stozhko N.Yu., Tarasov A.V. Highly sensitive voltammetric determination of Allura Red (E129) food colourant on a planar carbon fiber sensor modified with shungite // Anal. Chim. Acta. 2023. V. 1272. Article 341481.
  25. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems // J. Electroanal. Chem. 1979, V. 101. P. 19.
  26. Кропачева Т. Н., Елмашев Т.А. Вольтамперометрическое определение кармуазина в напитках с использованием электродов, модифицированных ПАВ // Вестн. Технологического ун-та. 2024. № 8. С. 24.
  27. Sarvestani M.R.J., Doroudi Z.A. Comprehensive review on electroanalytical methodologies for the determination of carmoisine (E122) // Food Anal. Methods. 2022. V. 15. P. 1565.
  28. Ghoreishi S.M., Behpour M., Golestaneh M. Simultaneous voltammetric determination of brilliant blue and tartrazine in real samples at the surface of a multi-walled carbon nanotube paste electrode // Anal. Methods. 2011. V. 3. Article 2842.
  29. Tutunaru B., Tigae C., Spînu C., Prunaru I. Spectrophotometry and electrochemistry of brilliant blue FCF in aqueous solution of NaX // Int. J. Electrochem. Sci. 2017. V. 12. P. 396.
  30. Temerk Y., Ibrahim H., Farhan, N. Square wave adsorptive stripping voltammetric determination of anticancer drug nilutamide in biological fluids using cationic surfactant cetyltrimethylammonium bromide // Anal. Methods. 2015. V. 7. P. 9137.
  31. Bard A.J., Faulkner L.R. Electrochemical Methods: Fundamentals and Applications, 2nd Ed. New York, NY, USA: John Wiley & Sons, 2001. 864 p.
  32. Mohammadi S.Z., Tajik S., Mousazadeh F., Baghadam-Narouei E., Garkani Nejad F. ZnO hollow quasi-spheres modified screen-printed graphite electrode for determination of carmoisine // Micromachines. 2023. V. 14. Article 1433.
  33. Velasco J.G. Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms // Electroanalysis. 1997. V. 9. P. 880.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. (a) Cyclic voltammograms recorded using unmodified (1, 2) and modified carbon fiber electrodes (3 – graphene/CFE, 4 – NiO–graphene/CFE, 5 – CTAB–NiO–graphene/CFE) in the absence (dashed) and presence (solid lines) of an equimolar mixture of 10 µM dyes Car, KO, SB. (b) Cyclic voltammograms recorded using carbon fiber electrodes modified with a mixture of graphene and metal oxide nanoparticles (1 – ZnO, 2 – Co3O4, 3 – NiO) in the presence of an equimolar mixture of 10 µM dyes Car, KO, SB. Background: BRB pH 7, ν = 25 mV/s.

Жүктеу (121KB)
3. Fig. 2. Effect of NiO content in the composite modifier on the oxidation peak potential difference (a) of dyes Car and KO (ΔE1), KO and SB (ΔE2), and their current (b) on the CTAB–NiO–graphene/CFE.

Жүктеу (206KB)
4. Fig. 3. Effect of CTAB concentration in the composite modifier on the oxidation peak potential difference (a) of dyes Car and KO (ΔE1), KO and SB (ΔE2), and their current (b) on the CTAB–NiO–graphene/CFE.

Жүктеу (225KB)
5. Fig. 4. (a) Cyclic voltammograms of 1.0 mM K4[Fe(CN)6] in 0.1 M KCl solution; (b) I = ƒ (1/t1/2) dependencies obtained from corresponding chronoamperograms in the same solution on different electrodes at 0.7 V.

Жүктеу (154KB)
6. Fig. 5. Effect of background solution pH on (a) oxidation peak potentials of dyes and (b) peak potential differences ΔE1 and ΔE2 between them.

Жүктеу (229KB)
7. Fig. 6. Dependencies (a) lg Ip = ƒ (lg ν) and (b) Ep = ƒ (lg ν) for Car, KO, and SB.

Жүктеу (153KB)
8. Fig. 7. Differential pulse voltammograms (with baseline correction) of various concentrations of Car, KO, and SB in the simultaneous presence in phosphate buffer solution at pH 7, ν = 50 mV/s.

Жүктеу (95KB)

© Russian Academy of Sciences, 2025