Copper ferrite nanoparticles: synthesis and study of their photocatalytic activity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Magnetic copper ferrite (II) nanoparticles are promising materials for biomedical, electronic and photocatalytic applications. In this work, homogeneous spherical CuFe₂O₄ nanoparticles with a size of 18.3 ± 0.4 nm and a band gap width of 2.37 eV were obtained by anion-exchange resin precipitation using AV-17-8 in OH form in the presence of dextran-40. The photocatalytic activity of the obtained material was studied on the example of photodegradation of a widely used anionic dye – indigo carmine in the presence of sacrificial reagents: sodium citrate, carbonate and hydrocarbonate, hydrogen peroxide. The effectiveness of the joint application of electron donors - sodium hydrocarbonate and citrate – in reducing the probability of recombination of photogenerated holes and electrons has been demonstrated. The kinetic parameters of the process were determined (pseudo-zero order, kapp. = 3.6 × 10–7 mol/(l × min), T1/2 = 75.8 ± 2.3 min) and its mechanism was elucidated. The intermediates of the photocatalytic oxidation of indigocarmine were determined by NMR.

全文:

受限制的访问

作者简介

A. Pavlikov

Siberian Federal University; Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: apavlikov98@mail.ru
俄罗斯联邦, Krasnoyarsk, 660041; Akademgorodok, Krasnoyarsk, 660036

S. Saikova

Siberian Federal University; Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences

Email: apavlikov98@mail.ru
俄罗斯联邦, Krasnoyarsk, 660041; Akademgorodok, Krasnoyarsk, 660036

D. Karpov

Siberian Federal University; Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences

Email: apavlikov98@mail.ru
俄罗斯联邦, Krasnoyarsk, 660041; Akademgorodok, Krasnoyarsk, 660036

T. Ivanenko

Institute of Chemistry and Chemical Engineering
Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences

Email: apavlikov98@mail.ru
俄罗斯联邦, Akademgorodok, Krasnoyarsk, 660036

D. Nemkova

Siberian Federal University

Email: apavlikov98@mail.ru
俄罗斯联邦, Krasnoyarsk, 660041

参考

  1. Akita M., Ceroni P., Stephenson C.R., Masson G. // J. Org. Chem. 2023. V. 88. P. 6281.https://doi.org/10.1021/acs.joc.3c00812
  2. Prentice C., Martin A.E., Morrison J. et al. // Org. Biomol. Chem. 2023. V. 21. P. 3307.https://doi.org/10.1039/D3OB00231D
  3. Huang Z., Luo N., Zhang C. et al. // Nat. Rev. Chem. 2022. V. 6. P. 197.https://doi.org/10.1038/s41570-022-00359-9
  4. Krasilnikov V.N., Zhukov V.P., Perelyaeva L.A. et al. // Phys. Solid State. 2013. V. 55. P. 1903.https://doi.org/10.1134/S1063783413090199
  5. Kumar S.G., Rao K.S.R.K. // RSC Advances. 2015. V. 5. P. 3306.https://doi.org/10.1039/C4RA13299H
  6. Chen Y., Soler L., Cazorla C. et al. // Nat. Commun. 2023. V. 14. P. 6165.https://doi.org/10.1038/s41467-023-41976-2
  7. Kim S.P., Choi M.Y., Choi H.C. // Mater. Res. Bull. 2016. V. 74. P. 85.https://doi.org/10.1016/j.materresbull.2015.10.024
  8. Liu X., Zhai H., Wang P. et al. // Catal. Sci. Technol. 2019. V. 9. P. 652.https://doi.org/10.1039/C8CY02375A
  9. Al-Alotaibi A.L., Altamimi N., Howsawi E. et al. // J. Inorg. Organomet. Polym. 2021. V. 31. P. 2017.https://doi.org/10.1007/s10904-021-01939-w
  10. Sarkar N., Gadore V., Mishra S.R. et al. // J. Inorg. Organomet. Polym. 2024. P. 1.https://doi.org/10.1007/s10904-024-03132-1
  11. Basu M., Sinha A.K., Pradhan M. et al. // Environ. Sci. Technol. 2010. V. 44. P. 6313.https://doi.org/10.1021/es101323w
  12. Adinarayana D., Annapurna N., Mohan B.S., Douglas P. // Desalination and Water Treatment. 2024. V. 320. P. 100593.https://doi.org/10.1016/j.dwt.2024.100593
  13. Peng H.-J., Zheng P.-Q., Chao H.-Y. et al. // RSC Adv. 2020 V. 10. P. 551.https://doi.org/10.1039/C9RA08801F
  14. Ciriminna R., Delisi R., Parrino F. et al. // Chem. Commun. 2017. V. 53. P. 7521.https://doi.org/10.1039/C7CC04242F
  15. Nasri R., Larbi T., Khemir H. et al. // Inorg. Chem. Commun. 2020. V. 119. P. 108113.https://doi.org/10.1016/j.inoche.2020.108113
  16. Wang L., Wang K., He T. et al. // ACS Sustainable Chem. Eng. 2020. V. 8. P. 16048.https://doi.org/10.1039/C3RA46079G
  17. Cao X., Chen Y., Jiao S. et al. // Nanoscale. 2014. V. 6. P. 12366.https://doi.org/10.1039/C4NR03729D
  18. Nikolić V.N., Vasić M.M., Kisić D. // J. Solid State Chem. 2019. V. 275. P. 187.https://doi.org/10.1016/j.jssc.2019.04.007
  19. Ponhan W., Maensiri S. // Solid State Sci. 2009. V. 11. P. 479.https://doi.org/10.1016/j.solidstatesciences.2008.06.019
  20. Xiao Z., Jin S., Wang X. et al. // J. Mater. Chem. 2012. V. 22. P. 16598.https://doi.org/10.1039/C2JM32869K.
  21. Teraoka Y., Shangguan W.F., Kagawa S. // Catal. Surv. Jpn. 1998. V. 2. P. 155.https://doi.org/10.1163/156856700X00246
  22. Saikova S., Pavlikov A., Karpov D. et al. // Materials. 2023. V. 16. P. 2318.https://doi.org/10.3390/ma1606231843
  23. Nemkova D.I., Saikova S.V., Krolikov A.E. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1.https://doi.org/10.1134/S0036023623603069
  24. Yusmar A., Armitasari L., Suharyadi E. // Mater. Today: Proceedings. 2018. V. 5. P. 14955.https://doi.org/10.1016/j.matpr.2018.04.037
  25. Sangeetha M., Ambika S., Madhan D. et al. // J. Mater. Sci. - Mater. Electron. 2024. V. 35. P. 368.https://doi.org/10.1007/s10854-024-12076-8
  26. Zhang Z., Cai W., Rong S. et al. // Catalysts. 2022. V. 12. P. 910.https://doi.org/10.3390/catal12080910
  27. Sonu Sharma S., Dutta V. et al. // Appl. Nanosci. 2023. V. 13. P. 3693.https://doi.org/10.1007/s13204-022-02500-y
  28. Amuthan T., Sanjeevi R., Kannan G.R., Sridevi A. // Physica B: Condens. Matter. 2022. V. 638. P. 413842.https://doi.org/10.1016/j.physb.2022.413842
  29. Li X., Shi C., Feng Z. et al. // J. Alloys Compd. 2023. V. 946. P. 169467.https://doi.org/10.1016/j.jallcom.2023.169467
  30. Dutta V., Sudhaik A., Khan A.A.P. et al. // Mater. Res. Bull. 2023. V. 164. P. 112238.https://doi.org/10.1016/j.materresbull.2023.112238
  31. Keerthana S., Yuvakkumar R., Ravi G. et al. // Environ. Res. 2021. V. 200. P. 111528.https://doi.org/10.1016/j.envres.2021.111528
  32. Kurenkova A.Y., Medvedeva T.B., Gromov N.V. et al. // Catalysts. 2021. V. 11. P. 870.https://doi.org/10.3390/catal11070870
  33. Куренкова А.Ю. Фотокаталитическое получение водорода из водных растворов неорганических соединений и органических субстратов растительного происхождения под действием видимого света. Новосибирск: Институт катализа им. Г.К. Борескова СО РАН, 2021. 124 с.
  34. Soto-Arreola A., Huerta-Flores A.M., Mora-Hernández J.M. et al. // J. Photochem. Photobiol., A: Chem. 2018. V. 357. P. 20.https://doi.org/10.1016/j.jphotochem.2018.02.016
  35. Sathiyan K., Bar‐Ziv R., Marks V. et al. // Chem. A. Eur. J. 2021. V. 27. P. 15936.https://doi.org/10.1002/chem.202103040
  36. Ahmad H., Kamarudin S.K., Minggu L.J., Kassim M. // Renew. Sustain. Energy Rev. 2015. V. 43. P. 599.https://doi.org/10.1016/j.rser.2014.10.101
  37. Christoforidis K.C., Fornasiero P. // Chem. Cat. Chem. 2017. V. 9. P. 1523.https://doi.org/10.1002/cctc.201601659
  38. Сайкова С.В., Пашков Г.Л., Пантелеева М.В. Реакционно-ионообменные процессы извлечения цветных металлов и синтеза дисперсных материалов. Красноярск: Сиб. федер. ун-т, 2018. 198 с.
  39. Aphalo P.J., Albert A., Björn L.O. et al. Beyond the Visible: A handbook of best practice in plant UV photobiology. Helsinki: University of Helsinki, Division of Plant Biology, 2012. 174 p.
  40. Saikova S.V., Trofimova T.V., Pavlikov A.Y., Samoilo A.S. // Russ. J. Inorg. Chem. 2020. V. 65. P. 291.https://doi.org/10.1134/S0036023620030110
  41. Finch G.I., Sinha A.P.B., Sinha K.P. // Proc. Royal Soc. A: Math. Phys. Eng. Sci. 1957. V. 242. P. 28.https://doi.org/10.1098/rspa.1957.0151
  42. Balagurov A.M., Bobrikov I.A., Maschenko M.S. et al. // Crystallogr. Rep. 2013. V. 58. P. 710.
  43. Makuła P., Pacia M., Macyk W. // J. Phys. Chem. Lett. 2018, V. 9. P. 6814.https://doi.org/10.1021/acs.jpclett.8b02892
  44. Василевский А.М., Коноплев Г.А., Панов М.Ф. // Оптико-физические методы исследований: Методические указания к лабораторным работам. СПб.: Изд-во СПбГЭТУ “ЛЭТИ”, 2011. 56 с.
  45. Zander J., Fink M.F., Attia M. et al. // Sustain. Energy Fuels. 2024. V. 8. P. 4848.https://doi.org/10.1039/D4SE00968A
  46. Uddin M.R., Khan M.R., Rahman M.W. et al. // React. Kinet. Mech. Catal. 2015. V. 116. P. 589.https://doi.org/10.1007/s11144-015-0911-7
  47. Lu C., Bao Z., Qin C. et al. // RSC Adv. 2016. V. 6. P. 110155.https://doi.org/10.1039/C6RA23970F
  48. Krieger W., Bayraktar E., Mierka O. et al. // AIChE J. 2020. V. 66. P. e16953.https://doi.org/10.1002/aic.1695
  49. Manjunatha J.G.G. // J. Food. Drug. Anal. 2018. V. 26. P. 292.https://doi.org/10.1016/j.jfda.2017.05.002
  50. Braz S., Justino L.L.G., Ramos M.L., Fausto R. // Molecules. 2024. V. 29. P. 3223.https://doi.org/10.3390/molecules29133223
  51. Tavallali H., Deilamy-Rad G., Moaddeli A., Asghari K. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2017. V. 183. P. 319.https://doi.org/10.1016/j.saa.2017.04.050
  52. Mudunkotuwa I.A., Grassian V.H. // J. Am. Chem. Soc. 2010. V. 132. P. 14986.https://doi.org/10.1021/ja106091q
  53. Field T.B., McCourt J.L., McBryde W.A.E. // Can. J. Chem. 1974. V. 52. P. 3119.https://doi.org/10.1139/v74-458
  54. Dheyab M.A., Aziz A.A., Jameel M.S. et al. // Sci. Rep. 2020. V. 10. P. 10793.https://doi.org/10.1038/s41598-020-67869-8
  55. Goodarzi A., Sahoo Y., Swihart M.T. et al. // MRS Online Proc. Library. 2003. V. 789. P. 23.https://doi.org/10.1557/PROC-789-N6.6
  56. Quici N., Morgada M.E., Gettar R.T. et al. // Appl. Catal. B. 2007. V. 71. P. 117.https://doi.org/10.1016/j.apcatb.2006.09.001
  57. Liu Y., He X., Duan X. et al. // Chem. Eng. J. 2015. V. 276. P. 113.https://doi.org/10.1016/j.cej.2015.04.048
  58. Tomina E.V., Sladkopevtsev B.V., Tien N.A. et al. // Inorg. Mater. 2023. V. 59. P. 1363.https://doi.org/10.1134/S0020168523130010
  59. Томина Е., Куркин Н., Конкина Д. // Экология и промышленность России. 2022. Т. 26. С. 17.https://doi.org/10.18412/1816-0395-2022-5-17-21
  60. Meichtry J.M., Quici N., Mailhot G., Litter M.I. // Appl. Catal. B: Environ. 2011. V. 102. P. 555.https://doi.org/10.1016/j.apcatb.2010.12.038
  61. Haleem A., Ullah M., Shah A. et al. // Water. 2024. V. 16. P. 1588.https://doi.org/10.3390/w16111588
  62. Yang D., Ni X., Chen W., Weng Z. // J. Photochem. Photobiol., A: Chem. 2008. V. 195. P. 323.https://doi.org/10.1016/j.jphotochem.2007.10.020
  63. Cano M., Solis M., Diaz J. et al. // African J. Biotech. 2011. V. 10. P. 12224.
  64. Ramos R.O., Albuquerque M.V.C. Lopes W. S. et al. // J. Water Process. Eng. 2020. V. 37. P. 101535.https://doi.org/10.1016/j.jwpe.2020.101535
  65. Hernández-Gordillo A., Rodríguez-González V., Oros-Ruiz S. // Catalysis Today. 2016. V. 266. P. 27.https://doi.org/10.1016/j.cattod.2015.09.001
  66. Crema A.P.S. Piazza Borges L.D., Micke G.A. et al. // Chemosphere. 2019. V. 244. P. 125502.https://doi.org/10.1016/j.chemosphere.2019.125502
  67. Terres J., Battisti R., Andreaus J. et al. // Biocatal. Biotransform. 2014. V. 32. P. 64.https://doi.org/10.3109/10242422.2013.873416
  68. Vautier M., Guillard C., Herrmann J. M. // J. Catal. 2001. V. 201. P. 46.https://doi.org/10.1006/jcat.2001.3232
  69. Jefferson W.A., Hu C. Song D // ACS Omega. 2017. V. 2. P. 6728.https://doi.org/10.1021/acsomega.7b00321

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. TEM image (a), electron microdiffraction (b) and size distribution diagram (c) of CuFe₂O₄ nanoparticles.

下载 (638KB)
3. Fig. 2. X-ray diffraction pattern of CuFe₂O₄ nanoparticles, as well as the results of profile refinement using the Rietveld method (red line) and the difference curve (light gray line).

下载 (147KB)
4. Fig. 3. Optical absorption spectrum of CuFe₂O₄ nanoparticle hydrosol (a) and Tauc plots for determining the band gap width of direct (b) and indirect (c) transitions.

下载 (254KB)
5. Fig. 4. Optical absorption spectrum of indigo carmine (5.5 × 10⁻⁵ M).

下载 (135KB)
6. Fig. 5. Changes in the optical absorption spectra of indigo carmine in the dark phase for the following systems: a – indigo carmine + NaHCO₃ + CuFe₂O₄ (experiment 1); b – indigo carmine + Na₃Cit + CuFe₂O₄ (experiment 2); c – indigo carmine + CuFe₂O₄ (experiment 3); d – indigo carmine + NaHCO₃ + Na₃Cit + CuFe₂O₄ (experiment 4).

下载 (531KB)
7. Fig. 6. Changes in the optical absorption spectra during the photocatalytic reaction for the following systems: a – indigo carmine + NaHCO₃ + CuFe₂O₄ (experiment 1); b – indigo carmine + Na₃Cit + CuFe₂O₄ (experiment 2); c – indigo carmine + CuFe₂O₄  (experiment 3); d – indigo carmine + NaHCO₃ + CuFe₂O₄ + Na₃Cit (experiment 4).

下载 (553KB)
8. Fig. 7. Effect of catalyst mass on the degree of photocatalytic decomposition of indigo carmine (a). Change in indigo carmine concentration (b) depending on the used copper ferrite mass and process time.

下载 (555KB)
9. Fig. 8. X-ray diffraction pattern of the photocatalyst (CuFe₂O₄ nanoparticles) after the photocatalytic reaction, as well as the results of profile refinement using the Rietveld method (red line) and the difference curve (light gray line).

下载 (165KB)
10. Fig. 9. Changes in optical absorption spectra during the photocatalytic reaction for the following systems: a – IR + H₂O₂ + Na₃Cit + CuFe₂O₄, n(H₂O₂) = n(Na₃Cit) (experiment 5); b – IR + Na₂CO₃+ citrate + CuFe₂O₄ (experiment 6).

下载 (317KB)
11. Fig. 10. NMR spectra ¹H (a) and ¹³C (b) of indigo carmine before the photocatalytic reaction.

下载 (264KB)
12. Fig. 11. NMR spectra ¹H (a, b) and ¹³C (c) of indigo carmine after the photocatalytic reaction.

下载 (291KB)

版权所有 © Russian Academy of Sciences, 2025