Structure and properties of magnesium complexes with bulky β-diketones: 2,2,6,6-tetramethylheptane-3,5-dione and its methoxy-substituted derivative

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In order to study the effect of bulky terminal substituents in the β-diketonate ligand on the structure and properties of volatile magnesium compounds, complexes with 2,2,6,6-tetramethylheptane-3,5-dione (HThd) and, for the first time, with 2-methoxy-2,6,6-trimethylheptane-3,5-dione (HZis) were obtained. The complexes [Mg2(L)4] (L = Thd (I), Zis (II)), the synthesis intermediates [Mg(H2O)2(L)2] (L = Thd (III), Zis (IV)), and aqua derivative [Mg2(H2O)(Zis)4] (V) were characterized by elemental analysis and IR spectroscopy. The structures of binuclear complexes and the synthesis by-product [Mg7(Zis)6(μ-OH)6]Cl2·5CHCl3 (VI) were established by X-ray diffraction (CCDC nos. 2424128 (Ia, a new polymorph), 2424130 (II), 2424129 (V), 2424126 (V · 1/2CHCl3), 2424127 (VI)). Both [Mg2(L)4] molecules are characterized by asymmetric environment of metal centers (Mg C.N. is 5, 6), but in I, three μ,κ21-ligands occupy bridging positions, while in II, two ligands have different coordinations (μ,κ21 and μ,κ2(O,O′):κ2(O′,OOMe)). The inclusion of water in II to give V is not accompanied by a considerable rearrangement of the structure, but C.N. of the unsaturated metal center changes from 5 to 6. It was shown by thermogravimetry that complex I is more volatile and low-melting than II.

作者简介

E. Rikhter

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk National Research State University

Novosibirsk, Russia; Novosibirsk, Russia

E. Vikulova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: lazorevka@mail.ru
Novosibirsk, Russia

T. Sukhikh

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

A. Strigunovskaya

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk National Research State University

Novosibirsk, Russia; Novosibirsk, Russia

N. Morozova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

参考

  1. Fahlman B.D. // Curr. Org. Chem. 2006. V. 10. № 9. P. 1021.
  2. Keeney L., Povey I.M. Tailored functional oxide nanomaterials: from design to multi-purpose applications, 2022. P. 1.
  3. Костюк Н.Н., Дик Т.А. // Журн. общ. химии. 2022. Т. 92. № 10. С. 2186 (Kostyuk N.N., Dick T.A. // Russ. J. Gen. Chem. 2022. V. 92. P. 2186). https://doi.org/10.1134/S1070363222100310
  4. Makarenko A.M., Zaitsau D.H., Zherikova K.V. // Coatings. 2023. V. 13. № 3. P. 535.
  5. Drozdov A., Troyanov S. // Main Group Met. Chem. 1996. V. 19. № 9. P. 547.
  6. Otway D.J., Rees W.S. // Coord. Chem. Rev. 2000. V. 210. № 1. P. 279.
  7. Fenton D.E. // J. Chem. Soc. A. 1971. P. 3481.
  8. Gordon R.G., Barry S.T., Liu X. et al. // MRS Proceedings. 1999. V. 574. P. 23.
  9. Hatanpää T., Kansikas J., Mutikainen I., Leskelä M. // Inorg. Chem. 2001. V. 40. № 4. P. 788.
  10. Fragalà M.E., Toro R.G., Rossi P. et al. // Chem. Mater. 2009. V. 21. № 10. P. 2062.
  11. Zherikova K.V., Vikulova E.S., Makarenko A.M. et al. // Thermochim. Acta. 2020. V. 689. P. 178643.
  12. Викулова Е.С., Рихтер Э.А., Пирязев Д.А. и др. // Журн. структур. химии. 2020. Т. 61. № 9. С. 1405 (Vikulova E.S., Rikhter E.A., Piryazev D.A. et al. // J. Struct. Chem. 2020. V. 61. № 9. P. 1405). https://doi.org/10.1134/S0022476620090073
  13. Sartori A., El Habra N., Bolzan M. et al. // Chem. Mater. 2011. V. 23. № 5. P. 1113.
  14. Halz J.H., Heiser C., Merzweiler K. // IUCrData. 2022. V. 7. № 11. P. 221035.
  15. El-Kaderi H.M., Xia A., Heeg M.J. et al. // Organometallics. 2004. V. 23. № 14. P. 3488.
  16. Sedai B., Heeg M.J., Winter C.H. // J. Organomet. Chem. 2008. V. 693. № 23. P. 3495.
  17. Matthews J.S., Just O., Obi-Johnson B., Rees W.S. // Chem. Vap. Deposition. 2000. V. 6. № 3. P. 129.
  18. Pousaneh E., Rüffer T., Assim K. et al. // RSC Adv. 2018. V. 8. № 35. P. 19668.
  19. Weiss E., Kopf J., Gardein T. et al. // Chem. Ber. 1985. V. 118. № 9. P. 3529.
  20. Куратьева Н.В., Викулова Е.С., Жерикова К.В. и др. // Журн. структур. химии. 2018. Т. 59. С. 131 (Kuratieva N.V., Vikulova E.S., Zherikova K.V. et al. // J. Struct. Chem. 2018. V. 59. P. 131). https://doi.org/10.1134/s0022476618010195
  21. Hatanpää T., Ihanus J., Kansikas J. et al. // Chem. Mater. 1999. V. 11. № 7. P. 1846.
  22. Kuchumov B.M., Shevtsov Y.V., Semyannikov P.P. et al. // Surf. Coat. Technol. 2009. V. 25. № 8. P. 927.
  23. Manin M., Thollon S., Emieux F. et al. // Surf. Coat. Technol. 2005. V. 200. № 5–6. P. 1424.
  24. Okada T., Komaki T. // Japan. J. Appl. Phys. 2008. V. 47. № 3R. P. 1699.
  25. Zhang Z., Filez M., Solano E. et al. // Nanoscale. 2024. V. 16. № 10. P. 5362.
  26. Atosuo E., Mäntymäki M., Ritala M. // Adv. Mater. Interfaces. 2024. P. 2400372.
  27. Arunasalam V.C., Drake S.R., Hursthouse M.B. et al. // Dalton Trans. 1996. P. 2435.
  28. Петрова Л.А., Дудин А.В., Махаев В.Д. и др. // Журн. неорган химии. 2005. Т. 50. № 10. С. 1541 (Petrova L.A., Dudin A.V., Makhaev V.D. et al. // Russ. J. Inorg. Chem. 2005. V. 50. № 10. P. 1541).
  29. Igumenov I.K., Semyannikov P.P., Belaya S.V. et al. // Polyhedron. 1996. V. 15. № 24. P. 4521.
  30. Уркасым кызы С., Крисюк В.В., Тургамбаева А.Е. и др. // Журн. структур. химии. 2019. Т. 60. С. 1635 (Urkasym kyzy S., Krisyuk V.V., Turgambaeva A.E. et al. // J. Struct. Chem. 2019. V. 60. P. 1635). https://doi.org/10.1134/S0022476619100093
  31. Уркасым кызы С., Рыбалова Т.В., Комаров В.Ю. и др. // Журн. структур. химии. 2022. Т.63. № 4. С. 524 (Urkasym kyzy S., Rybalova T.V., Komarov V.Y. et al. // J. Struct. Chem. 2022. V. 63. № 4. P. 524). https://doi.org/10.1134/S0022476619100093
  32. Krisyuk V.V., Sukhikh A.S., Berezin A.S. et al. // Polyhedron. 2024. V. 261. P. 117159.
  33. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  34. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  35. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339.
  36. Alvarez S., Alemany P., Casanova D. et al. // Coord. Chem. Rev. 2005. V. 249. № 17–18. P. 1693.
  37. Krisyuk V.V., Baidina I.A., Turgambaeva A.E. et al. // J. Organomet. Chem. 2016. V. 819. P. 115.
  38. Fakheri H., Tayyari S.F., Heravi M.M. et al. // J. Mol. Struct. 2017. V. 1150. P. 340.
  39. Wagner C.C., Baran E.J., Piro O.E. // J. Inorg. Biochem. 1999. V. 73. P. 259.
  40. Pye C.C., Rudolph W.W. // J. Phys. Chem. 1998. V. 102. P. 9933.
  41. Baxter I., Darr J.A., Hursthouse M.B. et al. // J. Chem. Crystallogr. 1998. V. 28. № 4. P. 267.
  42. Ahmed M.A., Fjellvåg H., Kjekshus A. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. № 5. P. 770.
  43. Сысоев С.В., Кузин Т.М., Зеленина Л.Н. и др. // Журн. неорган химии. 2020. Т. 65. № 5. С. 747 (Sysoev S.V., Kuzin T.M., Zelenina L.N. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 5. P. 747). https://doi.org/10.1134/S0036023620050241
  44. Stabnikov P.A., Pervukhina N.V., Kryuchkova N.A. et al. // Inorg. Chem. Commun. 2024. P. 112718.
  45. Guchhait T., Giri M., Mishra S.P. // J. Coord. Chem. 2024. V. 77. № 1–2. P. 49.
  46. Cotton F.A., Wise J.J. // Inorg. Chem. 1966. V. 5. № 7. P. 1200.
  47. Cotton F.A., Wood J.S. // Inorg. Chem. 1964. V. 3. № 2. P. 245.
  48. Janas Z., Jerzykiewicz L.B., Sobota P. // New J. Chem. 1999. V. 23. № 2. P. 185.
  49. Utko J., Lis T. // CSD Communication. 2019.
  50. Linnert M., Bruhn C., Schmidt H. et al. // Polyhedron. 2008. V. 27. № 1. P. 151.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025