Optimizing oxygenic photosynthesis: pH-regulation of electron transport in chloroplasts in silico

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, we carried out mathematical modeling of the electron and proton transport regulation in the thylakoid membranes of chloroplasts under different operating conditions of the electron transport chain (ETC) of chloroplasts. The study is based on the kinetic model of the functioning of the chloroplasts ETC proposed by us earlier, which describes the redox transformations of the reaction center of photosystem 1 (PS1), ferredoxin molecules, several forms of plastoquinone (PS2-related molecules PQA, PQB, and the pool of plastoquinones PQ/PQH2), as well as plastocyanin molecules. The model also simulates the induction curve of chlorophyll a fluorescence in the leaves of higher plants adapted to darkness. The multiphase kinetic curves obtained by varying the model parameters reflecting the rate of functioning of the Calvin–Benson cycle and the cyclic electron transport path around PS1 are in reasonable agreement with the published experimental data. The main result of our work is that it mathematically describes how pH-dependent regulatory processes occurring in various parts of the chloroplast ETC (non-cyclic, cyclic, and pseudocyclic electron transport) affect the kinetics of induction processes (slow induction of fluorescence and redox transformations of the PS1 photoreaction center) in dark-adapted chloroplasts of plants.

Texto integral

Acesso é fechado

Sobre autores

A. Vershubskii

Moscow Lomonosov State University

Email: an_tikhonov@mail.ru

Faculty of Physics

Rússia, Moscow

A. Tikhonov

Moscow Lomonosov State University

Autor responsável pela correspondência
Email: an_tikhonov@mail.ru

Faculty of Physics

Rússia, Moscow

Bibliografia

  1. Эдвардс Д., Уокер Д. 1986. Фотосинтез С3- и С4-растений: механизмы и регуляция. М.: Мир. 320 с.
  2. Blankenship R.E. 2002. Molecular Mechanisms of Photosynthesis. Malden, MA: Blackwell Science Inc.
  3. Buckanan B.B. 1980. Role of light in the regulation of chloroplast enzymes. Ann. Rev. Plant Physiol. 31, 341–374.
  4. Andersson I. 2008. Catalysis and regulation in Rubisco. J. Exp. Bot. 59, 1555–1568.
  5. Tikhonov A.N. 2018. The cytochrome b6 f complex: Biophysical aspects of its functioning in chloroplasts. In Membrane protein complexes: Structure and function. Subcellular Biochemistry. Eds. Harris J.R., Boekema E.J. Singapore: Springer. 87, p. 287–328. https://doi.org/10.1007/978-981-10-7757-9_10.
  6. Strand D.D., Fisher N., Kramer D.M. 2016. Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In Chloroplasts: Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Academic Press, p. 89–100.
  7. Shikanai T., Yamamoto H. 2017. Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Mol. Plant. 10 (1), 20–29.
  8. Asada K. 1999. The water-water cycle in chloroplasts. Scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physio. Plant Molec. Biol. 50 (1), 601–639.
  9. Foyer C.H., Noctor G. 2000. Oxygen processing in photosynthesis: Regulation and signalling. New Phytol. 146, 359–388.
  10. Козулева М.А., Иванов Б.Н. 2023. Генерация супероксидного анион-радикала в фотосинтетической электрон-транспортной цепи. Биохимия. 88 (8), 1283–1301.
  11. Ivanov B., Borisova-Mubarakshina M., Vilyanen D., Vetoshkina D., Kozuleva M. 2022. Cooperative pathway of O2 reduction to H2O2 in chloroplast thylakoid membrane: New insight into the Mehler reaction. Biophysical Rev. 4 (4), 857–869.
  12. Rumberg B., Siggel U. 1969. pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften, 56, 130–132.
  13. Рыжиков С.Б., Тихонов А.Н. 1988. Регуляция скорости переноса электрона в фотосинтетических мембранах высших растений. Биофизика, 33 (4), 642–646.
  14. Li X.-P., Gilmore A. M., Caffarri S., Bassi R., Golan T., Kramer D., Niyogi K.K. 2004. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279 (22), 22866–22874.
  15. Järvi S., Gollan P.J., Aro E.-M. 2013. Understanding the roles of the intrathylakoid lumen in photosynthetic regulation. Front. Plant Sci. 4, 434.
  16. Tikhonov A.N. 2013. pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res. 116, 511–534.
  17. Tikhonov A.N. 2015. Induction events and short-term regulation of electron transport in chloroplasts: An overview. Photosynth. Res. 125, 65–94. https://doi.org/10.1007/s11120-015-0094-0
  18. Tikhonov A.N. 2024. The cytochrome b6f complex: Plastoquinol oxidation and regulation of electron transport in chloroplasts. Photosynth. Res. 159, 23–227.
  19. Balsera M., Schürman P., Buchanan B.B. M. 2016. Redox regulation in chloroplasts. In Chloroplasts: Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Acadtmic Press. 187–207.
  20. Дубинский А.Ю., Тихонов А.Н. 1994. Регуляция электронного и протонного транспорта в хлоропластах. Кинетическая модель и ее сравнение с экспериментом. Биофизика. 39 (4), 652–665.
  21. Laisk A., Eichelmann Y., Oja V. 2009. Leaf C3 photosynthesis in silico: Integrated carbon/nitrogen metabolism. In: Photosynthesis in silico: Understanding complexity from molecules to ecosystems. Eds. Laisk A., Nedbal L. Govindjee. Dordrecht, The Netherlands: Springer, p. 295–322.
  22. Rubin A., Riznichenko G. 2014. Mathematical biophysics. N.Y.: Springer.
  23. Tikhonov A.N. 2016. Modeling electron and proton transport in chloroplasts. In: Chloroplasts. Current Research and Future Trends. Ed. Kirchhoff H. UK: Caister Academic Press, p. 101–134.
  24. Вершубский А.В., Приклонский В.И., Тихонов А.Н. 2001. Электронный и протонный транспорт в хлоропластах с учетом латеральной гетерогенности тилакоидов. Математическая модель. Биофизика. 46 (3) 471–485.
  25. Вершубский А.В., Приклонский В.И., Тихонов А.Н. 2004. Математическое моделирование электронного и протонного транспорта, сопряженного с синтезом ATP в хлоропластах. Биофизика. 49, 57–71.
  26. Vershubskii A.V., Kuvykin I.V., Priklonsky V.I., Tikhonov A.N. 2011. Functional and topological aspects of pH-dependent regulation of electron and proton transport in chloroplasts in silico. Biosystems. 103, 164–179.
  27. Вершубский А.В., Тихонов А.Н. 2013. Электронный транспорт и трансмембранный перенос протонов в фотосинтетических системах оксигенного типа in silico. Биофизика. 58 (1), 75–89.
  28. Вершубский А.В., Мишанин В.И., Тихонов А.Н. 2014. Моделирование регуляции фотосинтетического транспорта электронов у цианобактерий. Биол. мембраны. 31 (2), 110–128.
  29. Tikhonov A.N., Vershubskii A.V. 2014. Computer modeling of electron and proton transport in chloroplasts. Biosystems. 121, 1–21. https://doi.org/10.1016/j.biosystems.2014.04.007
  30. Vershubskii A.V., Trubitsin B.V., Priklonsky V.I., Tikhonov A.N. 2017. Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts. Biochim. Biophys. Acta. 1859, 388–401.
  31. Вершубский А.В., Невьянцев С.М., Тихонов А.Н. 2018. Моделирование электронного и протонного транспорта в мембранах хлоропластов с учетом тиоредоксин-зависимой активации цикла Кальвина–Бенсона и ATP-синтазы. Биол. мембраны. 35 (2), 87–103. https://doi.org/10.7868/S0233475518020019
  32. Вершубский А.В., Тихонов А.Н. 2019. рН-зависимая регуляция электронного и протонного транспорта в хлоропластах in situ и in silico. Биол. мембраны. 36 (4), 242–254.
  33. Tikhonov A.N., Vershubskii A.V. 2020. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. Photosynth. Res. 146, 299–329.
  34. Вершубский А.В., Приклонский В.И., Тихонов А.Н. 2025. Оксигенный фотосинтез: индукция флуоресценции хлорофилла a и регуляция электронного транспорта в тилакоидных мембранах in silico. Биол. мембраны. 42 (1), 3–19.
  35. Караваев В.А., Кукушкин А.К. 1976. Исследование состояния электронно-транспортной цепи в листьях высших растений методом быстрой индукции флуоресценции. Биофизика. 21 (5), 862–866.
  36. Lazár D. 1999. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta, 1412 (1), 1–28.
  37. Stirbet A., Govindjee, Strasser B., Strasser R.J. 1998. Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation. J. Theor. Biol. 193, 131–151.
  38. Johnson, M.P., Ruban, A.V. 2014. Rethinking the existence of a steady state Δψ component of the proton motive force across plant thylakoid membranes. Photosynth. Res. 60, 151–163.
  39. Wilson S., Johnson M.P., Ruban A.V. 2021. Proton motive force in plant photosynthesis dominated by ΔpH in both low and high light. Plant Physiol. 187, 263–275.
  40. Trinh M.D.K., Masuda S. 2022. Chloroplast pH regulation homeostasis for the regulation of photosynthesis. Front. Plant Sci. 13, 919896. https://doi.org/10.3389/fpls.2022.919896
  41. Semenov A.Yu., Tikhonov A.N. 2023. Electrometric and electron paramagnetic resonance measurements of a difference in the transmembrane electrochemical potential: Photosynthetic subcellular structures and isolated pigment–protein complexes. Membranes. 13, 1–22. https://doi.org/10.3390/membranes13110866
  42. Tikhonov A.N., Khomutov G.B., Ruuge E.K., Blumenfeld L.A. 1981. Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. Biochem. Biophys. Acta. 637, 321–333.
  43. Kramer D.M., Sacksteder C.A., Cruz J.A. 1999. How acidic is the lumen? Photosynth. Res. 60, 151–163.
  44. Trubitsin B.V., Tikhonov A.N. 2003. Determination of a transmembrane pH difference in chloroplasts with a spin label Tempamine. J. Magnet. Reson. 163, 257–269.
  45. Tikhonov A.N., Agafonov R.V., Grigor’ev I.A., Kirilyuk I.A., Ptushenko V.V., Trubitsin B.V. 2008. Spin-probes designed for measuring the intrathylakoid pH in chloroplasts. Biochim. Biophis. Acta. 1777, 285–294.
  46. Kirchhoff H., Hall C., Wood M., Herbstová M., Tsabari O., Nevo R., Charuvi D., Shimoni E., Reich Z. 2011. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. USA. 108, 20248–20253.
  47. Suslichenko I.S., Trubitsin B.V., Vershubskii A.V., Tikhonov A.N. 2022. The noninvasive monitoring of the redox status of photosynthetic electron transport in Hibiscus rosa-sinensis and Tradescantia leaves. Plant Physiol. Biochem. 185, 233–243.
  48. Беньков М.А., Сусличенко И.С., Трубицин Б.В., Тихонов А.Н. 2023. Влияние акклимации растений на электронный транспорт в мембранах хлоропластов Cucumis sativus и Cucumis melo. Биол. мембраны. 40 (3), 172–187.
  49. Маринин Н.А., Сусличенко И.С., Тихонов А.Н. 2025. Регуляция электронного транспорта в хлоропластах: индукционные процессы в листьях растений рода Cucumis. Биофизика. 70, 59–71.
  50. Ivanov B., Mubarakshina M., Khorobrykh S. 2007. Kinetics of the plastoquinone pool oxidation following illumination. Oxygen incorporation into photosynthetic electron transport chain. FEBS Lett. 581, 1342–1346.
  51. Дубинский А.Ю., Тихонов А.Н. 1997. Математическая модель тилакоида как распределенной гетерогенной системы электронного и протонного транспорта. Биофизика, 42 (3), 644–661.
  52. Genty B., Briantais J.-M., Baker N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 990, 87–92.
  53. Schansker G., Tóth S., Holzwart A.R., Garab G. 2014. Chlorophyll a fluorescence: Beyond the limits of the QA model. Photosynth. Res. 128, 43–58.
  54. Govindjee G. 1995. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol. 22, 131–160.
  55. Demmig-Adams B., Cohu C.M., Muller O., Adams W.W. 2012. Modulation of photosynthetic energy conversion efficiency in nature: From seconds to seasons. Photosynth. Res. 113, 75–88.
  56. Stirbet A., Govindjee. 2016. The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S–M fluorescence rise. Photosynth. Res. 130 (1–3), 193–213.
  57. Demmig-Adams B. 1998. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol. 39, 474–482.
  58. Horton P. 2012. Optimization of light harvesting and photoprotection: Molecular mechanisms and physiological consequences. Philosophical Transactions of the Royal Society B: Biol. Sciences, 367 (1608), 3455–3465.
  59. Trubitsin B.V., Vershubskii A.V., Priklonskii V.I., Tikhonov A.N. 2015. Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. J. Photochem. Photobiol. B, 152, 400–415.
  60. Mishanin V.I., Trubitsin B.V., Benkov M.A., Minin A.A., Tikhonov A.N. 2016. Light acclimation of shade-tolerant and light-resistant Tradescantia species: Induction of chlorophyll a fluorescence and P700 photooxidation, expression of PsbS and Lhcb1 proteins. Photosynth. Res. 130 (1–3), 275–291.
  61. Mishanin V.I., Trubitsin B.V., Patsaeva S.V., Ptushenko V.V., Solovchenko A.E., Tikhonov A.N. 2017. Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: Chlorophyll a fluorescence, electron transport, and xanthophyll content. Photosynth. Res. 133 (1–3), 87–102.
  62. Benkov M.A., Yatsenko A.M., Tikhonov A.N. 2019. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: Photochemical activity of PSII and its sensitivity to heat treatment. Photosynth. Res. 139, 203–214.
  63. Murchie E.H., Ruban A.V. 2020. Dynamic non-photochemical quenching in plants: From molecular mechanism to productivity. Plant J. 101, 885–896.
  64. Long S.P., Taylor S.H., Burgess S.J., Carmo-Silva E., Lawson T., De Souza A.P., Leonelli L., Wang Y. 2022. Into the shadow and back into sunlight: Photosynthesis in fluctuating light. Annu. Rev. Plant Biol. 73, 617–648.
  65. Noguchi K., Yoshida K. 2008. Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion. 8, 87–99.
  66. Тихонов А.Н., Шевякова А.В. 1985. Электронный транспорт, перенос протонов и их связь с фотофосфорилированием в хлоропластах. III. Влияние метаболического состояния на процессы протонного транспорта в хлоропластах. Биол. мембраны. 2 (5), 776–788.
  67. Масарова М., Тихонов А.Н. 1989. Влияние буферной емкости внутритилакоидного пространства на фотоиндуцированное поглощение протонов и скорость фотофосфорилирования в хлоропластах. Биофизика. 34 (1), 142–143.
  68. Тихонов А.Н., Блюменфельд Л.А. 1985. Концентрация водородных ионов в субклеточных частицах: физический смысл и методы определения. Биофизика. 30, 527–537.
  69. Blumenfeld L.A., Grosberg A.Yu., Tikhonov A.N. 1991. Fluctuations and mass action law breakdown in statistical thermodynamics of small systems. J. Chem. Phys. 95, 7541–7547.
  70. Blumenfeld L.A., Tikhonov A.N. 1994. Biophysical thermodynamics of intracellular processes. molecular machines of the living cell. New York: Springer-Verlag. 178 p.
  71. Sakano M. 1998. Revision of biochemical pH-stat: Involvement of alternative pathway metabolisms. Plant and Cell Physiol. 39 (5), 467–473. https://doi.org/10.1093/oxfordjournals.pcp.a029393.
  72. Zhou J.-Y., Hao D.-H., Yang G.-Z. 2021. Regulation of cytosolic pH: The contributions of plant plasma membrane H+ -ATPases and multiple transporters Int. J. Mol. Sci. 22 (23), 12998. https://doi.org/10.3390/ijms222312998.
  73. Дубинский А.Ю., Тихонов А.Н. 1995. Математическое моделирование фотоиндуцированного поглощения протонов хлоропластами для различных механизмов утечки протонов через тилакоидную мембрану. Биофизика. 40 (2), 365–371.
  74. Matz M.V., Fradkov A.F., Labas Y.A., Savitsky A.P., Zaraisky A.G., Markelov M.L., Lukyanov S.A. 1999. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973. https://doi.org/10.1038/13657.
  75. Зубова Н.Н., Савицкий А.П. 2005. Молекулярные клеточные сенсоры, созданные на основе флуоресцирующих белков. I. Сенсоры рН, ионов Cl, Са2+, Zn2+, Cu2+. 2005. Успехи биол. химии, 45, 391–454.
  76. Heldt H.W., Werdan K., Milivancev M., Geller G. 1973. Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim. Biophys. Acta. 314, 224–241.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Processes of electron and proton transport considered in the model. Abbreviations: PS1 and PS2 are photosystems 1 and 2, respectively, CBC is the Calvin–Benson cycle, NET is non-cyclic electron transport, CET is cyclic electron transport, PCET is pseudo-cyclic electron transport (the water–water cycle), NPT is non-photochemical quenching (weakening of the photochemical activity of PS2). Fd is ferredoxin, PQ and PQH2 are plastoquinone and plastoquinol, PQA and PQB are molecules of plastoquinone bound to PS2; CF0-CF1 is the ATP synthase complex. The diagram shows the designations of the effective rate constants of electron transport, which we varied when modeling the induction processes shown in Figs. 2–9 (see the text for details). L1 and L2 are the fluxes of light quanta exciting PS1 and PS2; the rate constants kP700 and kP680 characterize the efficiency of photochemical processes in the reaction centers of PS1 and PS2, respectively. The numerical values ​​of all rate constants are given in our previous work [34].

Baixar (190KB)
3. Fig. 2. Kinetic curves of changes in the relative concentration of the oxidized form of the P700 + reaction center, calculated for different ratios of the kFQ and kFN constants, which determine the rates of electron outflow from Fd along the ETC and NET chains (see definitions in Fig. 1). The fluxes of light absorbed by the pigments PS1 and PS2 are 150 quanta/s (PS1) and 250 quanta/s (PS2). The intrathylakoid buffer capacity Bi = 200. a – Kinetic curves were obtained for different values ​​of the kFQ parameter, which determines the electron flow along the ETC chain (at a constant value of the kFN coefficient = 10–2 s–1 (see more details [34]), which determines the electron transfer from Fd to NADP+). The ratios of rate constants kFQ/kFN are: 0 (1), 0.15 (2), 0.3 (3), 0.5 (4). b – Kinetic curves calculated for different values ​​of the constant kCBC, simulating the intensity of the CBC work: kCBC = 10–2 s–1 (1), 2 ∙ 10–2 s–1 (2), 5 ∙ 10–2 s–1 (3). The coefficient kCBC determines the rate of electron transfer from NADPH to the CBC (for more details, see [34]).

Baixar (185KB)
4. Fig. 3. Kinetic curves of photoinduced changes in relative concentrations of the oxidized form of ferredoxin, calculated for the same parameter values ​​as shown in Fig. 2. a – The ratios of rate constants kFQ/kFN are: kFQ/kFN = 0 (1), 0.15 (2), 0.3 (3), 0.5 (4). b – Kinetic curves calculated for different values ​​of the constant kCBC, simulating the intensity of the CBC work: kCBC = 10–2 s–1 (1), 2 ∙ 10–2 s–1 (2), 5 ∙ 10–2 s–1 (3). The kCBC coefficient determines the rate of electron transfer from NADPH to the CBC (for more details, see [34]).

Baixar (170KB)
5. Fig. 4. Kinetic curves of photoinduced changes in the relative concentrations of the reduced form of plastocyanin ([Pc–]), calculated for the same values ​​of the model parameters as indicated in the caption to Fig. 2. a – The ratios of the rate constants kFQ/kFN are: kFQ/kFN = 0 (1), 0.15 (2), 0.3 (3), 0.5 (4). b – Kinetic curves calculated for different values ​​of the constant kCBC, simulating the intensity of the CBC work: kCBC = 10–2 s–1 (1), 2 ∙ 10–2 s–1 (2), 5 ∙ 10–2 s–1 (3). The coefficient kCBC determines the rate of electron transfer from NADPH to the CBC (for more details, see [34]).

Baixar (162KB)
6. Fig. 5. Kinetic curves of light-induced changes in the relative concentrations of the reduced form of plastoquinone (PQH2), calculated for the same values ​​of the model parameters as indicated in the caption to Fig. 2. a – The ratios of the rate constants kFQ/kFN are: kFQ/kFN = 0 (1), 0.15 (2), 0.3 (3), 0.5 (4). b – Kinetic curves calculated for different values ​​of the constant kCBC, simulating the intensity of the CBC work: kCBC = 10–2 s–1 (1), 2 ∙ 10–2 s–1 (2), 5 ∙ 10–2 s–1 (3). The coefficient kCBC determines the rate of electron transfer from NADPH to the CBC (for more details, see [34]).

Baixar (165KB)
7. Fig. 6. Kinetic curves of photoinduced changes in intrathylakoid pHin and pHout of the stroma, calculated for the same values ​​of the model parameters as indicated in the caption to Fig. 2. a – The ratios of the rate constants kFQ/kFN are: kFQ/kFN = 0 (1), 0.15 (2), 0.3 (3), 0.5 (4). b – Kinetic curves calculated for different values ​​of the constant kCBC, simulating the intensity of the CBC work: kCBC = 10–2 s–1 (1), 2 ∙ 10–2 s–1 (2), 5 ∙ 10–2 s–1 (3). The coefficient kCBC determines the rate of electron transfer from NADPH to the CBC (for more details, see [34]).

Baixar (163KB)
8. Fig. 7. Kinetic curves of photoinduced changes in the relative ATP concentration (variable [ATP]), calculated for the same values ​​of the model parameters as indicated in the caption to Fig. 2. a – The ratios of the rate constants kFQ/kFN are: 0 (1), 0.15 (2), 0.3 (3), 0.5 (4). b – Kinetic curves calculated for different values ​​of the constant kCBC, simulating the intensity of the CBC work: kCBC = 10–2 s–1 (1), 2 ∙ 10–2 s–1 (2), 5 ∙ 10–2 s–1 (3). The coefficient kCBC determines the rate of electron transfer from NADPH to the CBC (for more details, see [34]).

Baixar (154KB)
9. Fig. 8. Kinetic curves of photoinduced changes in intrathylakoid pHin and pHout of the stroma (a), relative concentrations of the oxidized form of the reaction center P700 + (b), chlorophyll fluorescence induction curves (dependence of fluorescence intensity on the duration of actinic light action) (c), calculated at different values ​​of the buffer capacity: Bi = 100 (1), 200 (2), 400 (3). The fluxes of light absorbed by the pigments PS1 and PS2 are equal to 150 quanta/s (PS1) and 250 quanta/s (PS2). kFQ/kFN = 0.15, kCBC = 10–2 s–1. The remaining values ​​of the model parameters are given in the Appendix.

Baixar (167KB)
10. Fig. 9. Chlorophyll fluorescence induction curves (dependence of fluorescence intensity on duration of actinic light action), calculated for the same values ​​of the model parameters as indicated in the caption to Fig. 2. a – The ratios of rate constants kFQ/kFN are: 0 (1), 0.15 (2), 0.3 (3), 0.5 (4). b – Kinetic curves calculated for different values ​​of the constant kCBC, simulating the intensity of the CBC work: kCBC = 10–2 s–1 (1), 2 ∙ 10–2 s–1 (2), 5 ∙ 10–2 s–1 (3). The coefficient kCBC determines the rate of electron transfer from NADPH to the CBC (for more details, see [34]).

Baixar (183KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2025