THE INFLUENCE OF LIGHT, TEMPERATURE AND NUTRIENT DEFICIENCY ON THE STRUCTURAL AND FUNCTIONAL CHARACTERISTICS OF THE COCCOLITHOPHORIDE EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE)
- Autores: Stelmakh L.V.1, Alatartseva O.S.1
-
Afiliações:
- Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences
- Edição: Volume 18, Nº 5 (2025)
- Páginas: 860-868
- Seção: ФИТОПЛАНКТОН, ФИТОБЕНТОС, ФИТОПЕРИФИТОН
- URL: https://vestnik.nvsu.ru/0320-9652/article/view/693407
- DOI: https://doi.org/10.31857/S0320965225050086
- ID: 693407
Citar
Texto integral



Resumo
A clonal culture of the coccolithophoreEmiliania huxleyiwas isolated from the plankton of the Black Sea in February 2023. Its species identification was carried out using scanning electron microscopy and it was established that it belongs to type A. The optimal temperature for the development of this culture was revealed to be 20°C. The temperature coefficient (Q10) for the temperature range of 5–15°C was 3.36, and for the range of 10–20°C it was equal to 2.75. The influence of light on the structural and functional parameters of this species was studied. The maximum specific growth rate (1.37 day-1) was achieved at a light intensity of 157 µE/(m2 × s), and then it decreased as a result of light inhibition. The relative content of chlorophyllaper cell and dry weight decreased by 3–5 times as the light intensified from 8.5 to 425 μE/(m2 × s). The transfer ofE. huxleyicells, which have the maximum intracellular pool of nutrients, into seawater depleted in nutrients, caused a decrease in the increase in their number and the efficiency of photosystem II, as well as an increase in cell volume and surface area. The sensitivity of photosystem II to phosphorus deficiency was higher than to nitrogen deficiency. Due to the intracellular pool of nutrients, this type of algae carried out 1.43–1.77 cell divisions.
Palavras-chave
Sobre autores
L. Stelmakh
Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences
Email: lustelm@mail.ru
Sevastopol, Russia
O. Alatartseva
Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences
Autor responsável pela correspondência
Email: lustelm@mail.ru
Sevastopol, Russia
Bibliografia
- Биооптические характеристики морей, омывающих берега западной половины России, по данным спутниковых сканеров цвета 1998–2017 гг. 2018. М.: ООО “ВАШ ФОРМАТ”.
- Стельмах Л.В.2022. Особенности структурных и функциональных характеристик диатомовой водорослиPseudosolenia calcar-avis // Биология внутр. вод. № 3. С. 300. https://dx.doi.org/10.31857/S0320965222030184
- Стельмах Л. В.Влияние абиотических факторов на структурные и функциональные характеристики диатомовой водорослиCerataulina pelagicа(Сleve) Hendey// Биология внутр. вод.№ 2.С. 174. https://doi.org/10.31857/S0320965223020237
- Balch W.M., Holligan P.M., Ackleson S.G., Voss K.J.1991. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine // Limnol., Oceanogr. V. 36. P. 629. https://doi.org/10.4319/lo.1991.36.4.0629
- Balch W.M., Drapeau D.T., Cucci T.L. et al.1999. Optical backscattering by calcifying algae: Separating the contribution of particulate inorganic and organic carbon fractions // J. Geophys. Res. Oceans. V. 104(C1). P. 1541. https://doi.org/10.1029/1998JC900035
- Bratbak G.,Egge J.K.,Heldal M. 1993. Viral mortality of the marine algaEmiliania huxleyi(Haptophyceae) and termination of algal blooms // Mar. Ecol. Prog. Ser.V. 93. P. 39. https://doi.org/10.3354/meps093039
- Buitenhuis E.T., Pangerc T., Franklin D.J. et al.2008. Growth rates of six coccolithophorid strains as a function of temperature // Limnology and Oceanography. V. 53. P. 1181. https://doi.org/10.4319/lo.2008.53.3.1181.
- Eppley R., Rogers W.J.N., McCarthy J.J.1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton // Limnol., Oceanogr. V. 14. P. 912.
- Gafar N.A., Eyre B.D., Schulz K.G.2018. A conceptual model for projecting coccolithophorid growth, calcification and photosynthetic carbon fixation rates in response to global ocean change // Frontiers in Mar. Sci. V. 4. P. 1. https://doi.org/10.3389/fmars.2017.00433
- Glibert P.M., Wilkerson F.P., Dugdale R.C. et al. 2016. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions // Limnol., Oceanogr. V. 61. P. 165. https://doi.org/10.1002/lno. 10203
- Guillard R.R.L., Ryther J.H.1962. Studies of marine planktonic diatoms. I.Cyclotella nanaHustedt andDetonula confervaceaCleve // Can. J. Microbiol. V. 8. P. 229. https://doi.org/10.1139/m62-029
- Harris G.N.2005. Acclimation ofEmiliania huxleyi(Prymnesiophyceae) to photon flux density // J. Phycol. V. 41. P. 851. https://doi.org/10.1111/j.1529-8817.2005.00109.x
- Kemp A.E.S., Villareal T.A.2018. The case of the diatoms and the muddled mandalas: Time to recognize diatom adaptations to stratified waters // Prog. Oceanogr. V. 167. P. 138. https://doi.org/10.1016/j.pocean.2018.08.002
- Kopelevich O.V., Burenkov V.I., Sheberstov S.V. et al.2014. Satellite monitoring of coccolithophore blooms in the Black Sea from ocean color data // Remote Sensing Environ. V. 146. P. 113. https://doi.org/10.1016/j.rse.2013.09.009
- Kubryakova E.A., Kubryakov A.A., Mikaelyan A.S. 2021. Winter coccolithophore blooms in the Black Sea: Interannual variability and driving factors // J. Mar. Syst. V. 213. P. 103461. https://doi.org/10.1016/j.jmarsys.2020.103461
- Loebl M., Cockshutt A.M., Campbell D.A., Finkel Z.V. 2010.Physiological basis for high resistance to photoinhibition under nitrogen depletion inEmiliania huxleyi // Limnol., Oceanogr. V. 55. P. 2150. https://doi.org/10.4319/lo.2010.55.5.2150
- Mikaelyan A.S.,Pautova L.A.,Pogosyan S.I.,Sukhanova I.N. 2005. Summer bloom of coccolithophorids in the northeastern Black Sea // Oceanology. V. 45 (Suppl. 1). P. 127.
- Mikaelyan A.S., Silkin V.A., Pautova L. A.2011. Coccolithophorids in the Black Sea: their interannual and long-term changes // Russ. Acad. Sci. Oceanol. V. 51. P. 39. https://doi.org/10.1134/S0001437011010127
- Mikaelyan A.S., Kubryakov A.A., Silkin V.A. et al.2018. Regional climate and patterns of phytoplankton annual succession in the open waters of the Black Sea // Deep-Sea Res. Pt. I. V. 142. P. 44. https://doi.org/10.1016/j.dsr.2018.08.001
- Nielsen M.V. 1997. Growth, dark respiration and photosynthetic parameters of the coccolithophorid Emiliania huxleyi(Prymnesiophyceae) acclimated to different day lengthirradiance combinations // J. Phycol. V. 33(5). P. 818. https://doi.org/10.1111/j.0022-3646.1997.00818.x
- Paasche E.2002. A review of the coccolithophoridEmilinia huxleyi(Prymnesiophyceae) with particular reference to growth, coccolith formation, and calcification – photosynthesis interactions // Phycol. V. 40. P. 503. https://doi.org/10.2216/i0031-8884-40-6-503.1
- Perrin L., Probert I., Langer G., Aloisi G.2016. Growth of the coccolithophore Emiliania huxleyi in light- and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores // Biogeosciences. V. 13. P. 5983. 10.5194/bg-13-5983-2016' target='_blank'>www.biogeosciences.net/13/5983/2016/doi: 10.5194/bg-13-5983-2016
- Protocols for the Joint Global Ocean Flux Study (JGOFS)Core Measurements. JGOFS Report Nr. 19, vi+170 pp. Reprint of the IOC Manuals and Guides No. 29. UNESCO. 1994. https://hdl.handle.net/11329/220
- Read B.A., Kegel J., Klute M.J.et al.2013. Pan genome of the phytoplanktonEmilianiaunderpins its global distribution // Nature. V. 499. P. 209. https://doi.org/10.1038/nature12221
- Riegman R., Stolte W., Noordeloos A.M. et al.2000. Nutrient uptake and alkaline phosphatase (ec 3:1:3:1) activity ofEmiliania huxleyi(Prymnesiophyceae) during growth under n and p limitation in continuous cultures // J. Phycol. V. 36. P. 87. https://doi.org/10.1046/j.1529-8817.2000.99023.x
- Rijssel M., Gieskes W.W.C.2002. Temperature, light, and the dimethylsulfoniopropionate (DMSP) content ofEmiliania huxleyi(Prymnesiophyceae) // J. Sea Res. V. 48. P. 17. https://doi.org/10.1016/S1385-1101(02)00134-X
- Rosas-Navarro A., Langer G., Ziveri P. 2016. Temperature affects the morphology and calcification ofEmiliania huxleyistrains // Biogeosciences. V. 13. P. 2913. https://doi.org/10.5194/bg-13-2913-2016
- Silkin V., Pautova L., Podymov O. et al.2023.Phytoplankton dynamics and biogeochemistry of the Black Sea // J. Mar. Sci. Eng. V. 11. P. 1196. https://doi.org/10.3390/jmse11061196
- Steele J. H.1962. Environmental control of photosynthesis in the sea // Limnol., Oceanogr. V. 7. P. 137. https://doi.org/10.4319/lo.1962.7.2.0137
- Stelmakh L.V., Georgieva E.Yu. 2014. Microzooplankton: the trophic role and involvement in the phytoplankton loss and bloom-formation in the Black Sea // Turkish J. Fish. Aquat. Sci. V. 14. P. 955. https://doi.org/10.4194/1303-2712-v14_4_15
- Stelmakh L., Gorbunova T.2018.Emiliania huxleyiblooms in the Black Sea: influence of abiotic and biotic factors // Bot. (Bot. Lith.). V. 24(2). P. 172. https://doi.org/10.2478/botlit-2018-0017
- Strom S., Wolfe G., Slajer A. et al.2003. Chemical defence in the microplankton II: Inhibition of protist feeding by bdimethylsulfoniopropionate (DMSP) // Limnol., Oceanogr. V. 48. P. 230. https://doi.org/10.4319/lo.2003.48.1.0230
- Taylor A.R.,Brownlee C.,Wheeler G. 2017. Coccolithophore cell biology: chalking up progress // Ann. Rev. Mar. Sci. V. 9. P. 283. https://doi.org/10.1146/annurev-marine-122414-034032
- Tyrrell T., Merico A.2004.Emiliania huxleyi: bloom observations and the conditions that induce them // Coccolithophores. Berlin; Heidelberg: Springer. P. 75. https://doi.org/10.1007/978-3-662-06278-4_4
- Yasakova O.N., Okolodkov Y.B., Chasovnikov V.K.2017. Increasing contribution of coccolithophorids to the phytoplankton in the northeastern Black Sea // Mar. Pollut. Bull. V. 124(1). P. 526. https://doi.org/10.1016/j.marpolbul.2017.07.037
- Young J.R., Geisen M., Cros L., et al.2003. A guide to extant coccolithophore taxonomy // J. Nannoplankton Res. Special Is. 1. https://doi.org/10.58998/jnr2297
- Yunev O.A., Carstensen J., Stelmakh L.V. et al. 2021. Reconsideration of the phytoplankton seasonality in the open Black Sea // Limnol., Oceanogr. Lett. V. 6. P. 51. https://doi.org/10.1002/lol2.10178
- Ziveri P., Baumann K.-H., Boeckel B. et al.2004. Biogeography of selected holocene coccoliths in the Atlantic Ocean // Coccolithophores. Berlin; Heidelberg: Springer. P. 403. https://doi.org/10.1007/978-3-662-06278-4_15
Arquivos suplementares
