Interaction of a powerful hydrogen plasma flow with a supersonic gas jet and a tungsten target

Capa

Citar

Texto integral

Resumo

The results of a study of the interaction of a powerful flow of hydrogen plasma with a supersonic gas jet in front of a tungsten target are presented. Nitrogen or neon injected in front of the target surface provides a reliable method of shielding tungsten from direct exposure to hydrogen plasma. It has been experimentally shown that the resulting plasma of the gas jet is a powerful source of short-wave line radiation. Energy density absorbed by a tungsten target ≈25 J/cm2 is half the energy absorbed by tungsten during pulsed action of a hydrogen plasma flow without a gas jet ≈50 J/cm2. The maximum temperature achieved by the tungsten surface is ≈3700 K with the use of a gas jet and ≈5800 K without a gas jet. The presence of a gas jetscreen in front of the tungsten leads to the localization of evaporated tungsten near the target at distances of up to 1 cm from the surface.

Texto integral

Acesso é fechado

Sobre autores

S. Lidzhigoriaev

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: sandji@triniti.ru
Rússia, Troitsk, Moscow, 108840; Moscow, 141701

D. Burmistrov

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Power Engineering Institute

Email: sandji@triniti.ru
Rússia, Troitsk, Moscow, 108840; Moscow, 111250

V. Gavrilov

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research

Email: vvgavril@triniti.ru
Rússia, Troitsk, Moscow, 108840

V. Kostyushin

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research

Email: sandji@triniti.ru
Rússia, Troitsk, Moscow, 108840

I. Poznyak

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

Email: sandji@triniti.ru
Rússia, Troitsk, Moscow, 108840; Moscow, 141701

A. Pushina

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

Email: sandji@triniti.ru
Rússia, Troitsk, Moscow, 108840; Moscow, 141701

D. Toporkov

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

Email: toporkov@triniti.ru
Rússia, Troitsk, Moscow, 108840; Moscow, 141701

Bibliografia

  1. Toporkov D.A., Burmistrov D.A., Gavrilov V.V., Zhitlukhin A.M., Kostyushin V.A., Lidzhigoryaev S.D., Pushina A.V., Pikuz S. A., Ryazantsev S.N., Skobelev I.Yu. // Plasma Phys. Rep. 2023. V. 49. P. 1000.
  2. Skovorodin D.I., Pshenov A.A., Arakcheev A.S., Eksaeva E.A., Marenkov E.D., Krasheninnikov S.I. // Phys. Plasmas. 2016. V. 23. P. 022501.
  3. Kostyushin V.A., Poznyak I.M., Toporkov D.A., Burmistrov D.A., Zhuravlev K.V., Lidzhigoryaev S. D., Usmanov R.R., Tsybenko V. Yu., Nemchinov V.S. // Instruments Experimental Techniques. 2023. V. 66. P. 920.
  4. Житлухин А.М., Илюшин И.В., Сафронов В.М., Скворцов Ю.В. // Физика плазмы. 1982. Т. 8. С. 509.
  5. Лиджигоряев С.Д., Бурмистров Д.А., Гаврилов В.В., Костюшин В.А., Позняк И.М., Пушина А.В., Топорков Д.А. // ВАНТ. Сер. Термоядерный синтез. 2023. Т. 46. С. 63.
  6. Архипов Н.И., Васенин С.Г., Житлухин А.М., Половцев Н.А., Сафронов В.М., Топорков Д.А. // Приборы и техника эксперимента. 1998. № 1. С. 128.
  7. Волков Г.С., Лахтюшко Н.И., Терентьев О.В. // Приборы и техника эксперимента. 2010. № 5. С. 115.
  8. Prism Computational Sciences. Software tools for scientific research and commercial applications in the physical sciences and engineering. http://www.prism-cs.com
  9. Mutzke A., Bandelow G., Schneider R. // J. Nuclear Materials. 2015. V. 467. P. 413.
  10. Mikhailov V.S., Babenko P.Yu., Shergin A.P., Zinoviev A.N. // Plasma Phys. Rep. 2024. V. 50. P. 23.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of experiments on the MK-200 installation: 1 – pulsed plasma accelerator, 2 – magnetic field coils, 3 – magnetic probes, 4 – Helmholtz coils, 5 – tungsten target, 6 – plasma flow, 7 – pulsed gas valve, 8 – gas jet, 9 – target plasma.

Baixar (23KB)
3. Fig. 2. Scheme of plasma radiation registration using a radiation foil bolometer.

Baixar (19KB)
4. Fig. 3. Pyrometer diagram: 1 – diaphragm, 2 – beam splitter plates, 3 – light filters, 4 – photodiodes, 5 – photodiode signal amplifiers.

Baixar (16KB)
5. Fig. 4. Schematic diagram of the relative positions of the plasma flow, gas curtain, tungsten target and diagnostic equipment: side view (a), top view (b): 1 – plasma flow, 2 – solenoids, 3 – magnetic probes, 4 – tungsten target, 5 – gas valve, 6 – gas curtain, 7 – target plasma, 8 – system of pipes, 9 – lens, 10 – pyrometer, 11 – MCP camera/spectrograph, 12 – bolometer.

Baixar (22KB)
6. Fig. 5. Dynamics of interaction of hydrogen plasma flow with nitrogen gas jet and tungsten target. t = 0 – moment of high voltage supply to accelerator electrodes.

Baixar (47KB)
7. Fig. 6. Radiation spectrum of the target plasma using a nitrogen gas curtain. Frame start time is 18 μs from the accelerator start. Frame exposure is 2 μs. The distances from the target surface for which the spectra were scanned are indicated.

Baixar (32KB)
8. Fig. 7. Dynamics of interaction of hydrogen plasma flow with neon gas curtain and tungsten target. t = 0 – moment of high voltage supply to accelerator electrodes.

Baixar (50KB)
9. Fig. 8. Radiation spectrum of the target plasma using a neon gas curtain. Frame start time is 18 μs from the accelerator start. Frame exposure is 2 μs. The distances from the target surface for which the spectra were scanned are indicated.

Baixar (30KB)
10. Fig. 9. Dynamics of interaction of hydrogen plasma flow with tungsten target without gas curtain. t = 0 – moment of high voltage supply to accelerator electrodes.

Baixar (43KB)
11. Fig. 10. The emission spectrum of the target tungsten plasma without using a gas curtain. The frame start time is 18 μs from the start of the accelerator. The frame exposure is 2 μs. The spectrum scanning was performed for a distance of 20 mm from the target surface.

Baixar (22KB)
12. Fig. 11. Dynamics of the surface temperature of the irradiated target. t = 0 – the moment of applying high voltage to the accelerator electrodes.

Baixar (27KB)
13. Fig. 12. Dynamics of the total energy (a) and power (b) of radiation of nitrogen plasma 1, neon plasma 2 under the action of a hydrogen plasma flow on a tungsten target with a gas curtain and tungsten plasma in the absence of a curtain (3). t = 0 is the moment of applying high voltage to the accelerator electrodes.

Baixar (48KB)
14. Fig. 13. Distribution of the density of energy absorbed by the target in the experiments: nitrogen curtain (a); neon curtain (b); without gas curtain (c).

Baixar (28KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024