Use of fluorescence staining technique for identification of microorganisms in pharmaceutical analysis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Standard techniques for the detection and quantification of bacteria and fungi from drugs are not adequate for rapid (less than 24 hours) assessment of injured or uncultivated microorganisms and for their isolation. The paper considers alternative methods for the direct determination of microbial cells in a sample, by using fluorescence staining at the key stage, for example, up-to-date technologies, such as microscopy and flow and solid-phase cytometry, which have not currently found a wide utility in the practice of pharmaceutical analysis due to methodological problems. It describes different fluorochromes widely used for scientific and practical purposes, the specific features and limitations of their application and gives a review of physiological and taxonomic fluorescent dyes. Emphasis is placed on the importance and prospects of fluorescence staining of samples under study in combination with current developing technologies; it is concluded that the application of different fluorophores requires careful selection of conditions and development and validation of procedures for analysis in practice.

Full Text

Restricted Access

About the authors

Olga Viktorovna Gunar

Research Center for Examination of Medical Products Ministry of Health of the Russian Federation

Email: gunar@expmed.ru
Head of Laboratory of Microbiology, Doctor of Pharmaceutical Sciences 8, Petrovsky Boulevard, Build. 2, Moscow 127051, Russian Federation

Nadezhda Gennad'evna Sakhno

Research Center for Examination of Medical Products Ministry of Health of the Russian Federation

Email: nadine87@inbox.ru
Chief expert of Laboratory of Microbiology, PhD. 8, Petrovsky Boulevard, Build. 2, Moscow 127051, Russian Federation

Marina Vladimirovna Roshchina

Research Center for Examination of Medical Products Ministry of Health of the Russian Federation

Email: m.roshchina@mail.ru
1-st category Expert of Laboratory of Microbiology, PhD. 8, Petrovsky Boulevard, Build. 2, Moscow 127051, Russian Federation

References

  1. Балалаева И.В. Проточная цитофлуориметрия. Нижний Новгород: Нижегородский госуниверситет, 2014; 75.
  2. Suller M.T.E., Stark J.M., Lloyd D. A flow cytometric study of antibiotic-induced damage and evaluation as a rapid antibiotic susceptibility test for methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 1997; 40 (1): 77-83. https://doi.org/10.1093/jac/40.1.77
  3. Vanhee L., Nelis H., Coenye T. Detection and quantification of viable airborne bacteria and fungi using solid-phase cytometry. Nature Protocols, 2009; 4: 224 - 31. https://doi.org/10.1038/nprot.2008.228
  4. Ramani R., Ramani A., Wong S.J. Rapid flow cytometric susceptibility testing of Candida albicans. Journal of clinical microbiology, 1997; 35 (9): 2320 -4.
  5. Rudensky B., Broidie E., Yinnon A.M. et al. Rapid flow-cytometric susceptibility testing of Candida species. Journal of Antimicrobial Chemotherapy, 2005; 55 (1): 106 -109. https://doi.org/10.1093/jac/dkh492
  6. Chaturvedi V., Ramani R., Pfaller M.A. Collaborative study of the NCCLS and flow cytometry methods for antifungal susceptibility testing. of Candida albicans. Journal of clinical microbiology, 2004; 42 (5): 2249 -51. https://doi.org/10.1128/jcm.42.5.2249-2251.2004
  7. Gauthier C., St-Pierre Y., Villemur R. Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry. Journal of Medical Microbiology, 2002; 51 (3): 192-200. https://doi.org/10.1099/0022-1317-51-3-192
  8. Van Belkum A., Dunne W.M. Next-generation antimicrobial susceptibility testing. Journal of Clinical Microbiology, 2013; 51 (7): 2018-24. https://doi.org/10.1128/JCM.00313-13
  9. Riley B. Rapid Microbiology Methods in the Pharmaceutical Industry. American pharmaceutical review, 2006 [Electronic resource]. Access mode: http://www.americanpharmaceuticalreview.com/Featured-rticles/113094-Rapid-Microbiology-Methods-in-the-Pharmaceutical-Industry
  10. Гунар О.В., Сахно Н.Г. Количественное определение микроорганизмов-контаминантов лекарственных средств с использованием системы «Milliflex® quantum». Фармация, 2019; 68 (3): 5-11. https://doi.org/10.29296/25419218-2019-03-01
  11. Gordon O., Goverde M., Staerk A., Roesti D. Validation of Milliflex® Quantum for Bioburden Testing of Pharmaceutical Products. PDA Journal of Pharmaceutical Science and Technology, 2017; 71 (3): 206-24. https://doi.org/10.5731/pdajpst.2016.007450
  12. Сайфитдинова А.Ф. Двумерная флуоресцентная микроскопия для анализа биологических образцов. СПб.: 2011; 110.
  13. Jeppe L. Nielsen, Robert J. Seviour, Per H. Nielsen Chapter 7. Microscopy. Experimental methods in wastewater treatment, 1st ed., ed. M C M van Loosdrecht; Per Halkjær Nielsen; Carlos Manuel Lopez Vazquez; Damir Brdjanovic. London : IWA Publishing, 2016; 263-84
  14. Lavis L.D., Raines R.T. Bright Ideas for Chemical Biology. ACS Chemical Biology 3 - 2008; 3: 142-55. https://doi.org/10.1021/cb700248m
  15. Hong S.D., Dhong H.J., Chung S.K. et al. Hematoxylin and eosin staining for detecting biofilms: practical and cost-effective methods for predicting worse outcomes after endoscopic sinus surgery. Clinical and Experimental Otorhinolaryngology, 2014; 7:1 93-197. https://doi.org/10.3342/ceo.2014.7.3.193
  16. Дивянин Н.Н. Получение и исследование флуорофоров для создания «флуоресцентного языка». М.:, 2017.
  17. Нетрусов А.И., Бонч-Осмоловская Е.А., Горленко В.М. и др. (Под ред. А.И. Нетрусова). Экология микроорганизмов. М.: Академия, 2004; 272.
  18. Воробьев И.А., Рафаловская-Орловская Е.П., Гладких А.А. Флуоресцентные полупроводниковые нанокристаллы в микроскопии и цитометрии. Цитология, 2011; 53 (5): 392-403.
  19. Олейников В.А., Суханова А.В., Набиев И.Р. Флуоресцентные полупроводниковые нанокристаллы в биологии и медицине. Российские нанотехнологии, 2007; 2 (1-2): 160-73.
  20. Lee S.F., Osborne M.A. Brightening, blinking, bluing and bleaching in the life of a quantum dot: friend or foe? Physical Chemistry Chemical Physics, 2009; 10 (13): 2174-91. doi: 10.1002/cphc.200900200
  21. Залесский В.Н. Молекулярная диагностика: лазерная сканирующая и проточная цитометрия в исследовании апоптоза. Украинский медицинский журнал «Часопис», 2010; 4 (78): 27-31.
  22. Davey H.M., Kell D.B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiological reviews, 1996; 60 (4): 641-96.
  23. Diaper J.P., Edwards C. The use of fluorogenic esters to direct viable bacteria by flow cytometry. Journal of Applied Bacteriology, 1994; 77: 221-8. https://doi.org/10.1111/j.1365-2672.1994.tb03067
  24. Breeuwer P., Drocourt J.L., Bunschoten N. et al. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Applied and Environmental Microbiology, 1995; 61(4): 1614-9.
  25. Von Nebe-Caron G., Badley R.A. Viability assessment of bacteria in mixed populations using flow cytometry. 1995; 179 (1): 55-66. https://doi.org/10.1111/j.1365-2818.1995.tb03612

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies