Dynamic Susceptibility of Skyrmion Crystal

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using stereographic projection approach, we develop a theory for calculation of dynamic susceptibility tensor of Skyrmion crystals (SkX), formed in thin ferromagnetic films with Dzyaloshinskii–Moriya interaction and in the external magnetic field. Staying whenever possible within analytical framework, we employ the model ansatz for static SkX configuration and discuss small fluctuations around it. The obtained formulas are numerically analyzed in the important case of uniform susceptibility, accessible in magnetic resonance experiments. We show that, in addition to three characteristic magnetic resonance frequencies discussed earlier both theoretically and experimentally, one should also expect several resonances of smaller amplitude at somewhat higher frequencies.

Sobre autores

V. Timofeev

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, 188300, Gatchina, Russia; St. Petersburg State University, 199034, St. Petersburg, Russia; St. Petersburg Electrotechnical University LETI, 197376, St. Petersburg, Russia

Email: vetimofeev@etu.ru

D. Aristov

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, 188300, Gatchina, Russia; St. Petersburg State University, 199034, St. Petersburg, Russia

Autor responsável pela correspondência
Email: vetimofeev@etu.ru

Bibliografia

  1. N. Bogdanov and D. A. Yablonskii, Sov. Phys. JETP 68, 101 (1989).
  2. H. Vakili, J.-W. Xu, W. Zhou, M. N. Sakib, M. G. Morshed, T. Hartnett, Y. Quessab, K. Litzius, C. T. Ma, S. Ganguly, M. R. Stan, P. V. Balachandran, G. S. D. Beach, S. J. Poon, A. D. Kent, and A. W. Ghosh, J. Appl. Phys. 130, 070908 (2021).
  3. Z. Yan, Y. Liu, Y. Guang, K. Yue, J. Feng, R. Lake, G. Yu, and X. Han, Phys. Rev. Appl. 15, 064004 (2021).
  4. S. Li, W. Kang, X. Zhang, T. Nie, Y. Zhou, K. L. Wang, and W. Zhao, Mater. Horiz. 8, 854 (2021).
  5. S. Mu�hlbauer, B. Binz, F. Jonietz, C. P eiderer, A. Rosch, A. Neubauer, R. Georgii, and P. B�oni, Science 323, 915 (2009).
  6. X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nature Mater. 10, 106 (2010).
  7. X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010).
  8. A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura, Nano Lett. 12, 1673 (2012).
  9. P. Huang, T. Sch�onenberger, M. Cantoni, L. Heinen, A. Magrez, A. Rosch, F. Carbone, and H. M. R�nnow, Nature Nanotechn. 15, 761 (2020).
  10. M. Garst, J. Waizner, and D. Grundler, Journal of Physics D: Applied Physics 50, 293002 (2017).
  11. A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).
  12. C. Schu�tte and M. Garst, Phys. Rev. B 90, 094423 (2014).
  13. S.-Z. Lin, C. D. Batista, and A. Saxena, Phys. Rev. B 89, 024415 (2014).
  14. O. Petrova and O. Tchernyshyov, Phys. Rev. B 84, 214433 (2011).
  15. M. Mochizuki, Physical. Rev. Lett. 108, 017601 (2012).
  16. S. A. D'iaz, T. Hirosawa, J. Klinovaja, and D. Loss, Physical Review Research 2, 013231 (2020)
  17. T. Weber, D. M. Fobes, J. Waizner et al. (Collobartion), Science 375, 1025 (2022).
  18. N. Ogawa, S. Seki, and Y. Tokura, Sci. Rep. 5, 1(2015).
  19. Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, and Y. Tokura, Phys. Rev. Lett. 109, 037603 (2012).
  20. R. Takagi, M. Garst, J. Sahliger, C. H. Back, Y. Tokura, and S. Seki, Phys. Rev. B 104, 144410 (2021).
  21. A. Aqeel, J. Sahliger, T. Taniguchi, S. M�andl, D. Mettus, H. Berger, A. Bauer, M. Garst, C. P eiderer, and C. H. Back, Phys. Rev. Lett. 126, 017202 (2021).
  22. O. I. Utesov, Phys. Rev. B 103, 064414 (2021).
  23. O. I. Utesov, Phys. Rev. B 105, 054435 (2022).
  24. S.-Z. Lin, A. Saxena, and C. D. Batista, Phys. Rev. B 91, 224407 (2015).
  25. U. Gu�ng�ordu�, R. Nepal, O. A. Tretiakov, K. Belashchenko, and A. A. Kovalev, Phys. Rev. B 93, 064428 (2016).
  26. J. H. Han, J. Zang, Z. Yang, J.-H. Park, and N. Nagaosa, Phys. Rev. B 82, 094429 (2010).
  27. V. E. Timofeev, A. O. Sorokin, and D. N. Aristov, JETP Lett. 109, 207 (2019).
  28. V. E. Timofeev, A. O. Sorokin, and D. N. Aristov, Phys. Rev. B 103, 094402 (2021).
  29. V. E. Timofeev and D. N. Aristov, Phys. Rev. B 105, 024422 (2022).
  30. A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023