Influence of the Carrier–Envelope Phase on the Generation of the Multioctave Supercontinuum and Ultrashort Pulses in Antiresonant Hollow Waveguides

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of the carrier–envelope phase on the spectrum of the supercontinuum and on the characteristics of ultrashort pulses, which are formed by the nonlinear optical transformation of pump pulses in an argon-filled antiresonant hollow waveguide has been demonstrated. The experimental and theoretical analysis has shown that the soliton self-compression of pump radiation with a central wavelength of about 2 μm forms a pulse with a duration of nearly one optical cycle and with a spectrum broadened to the region of 400‒800 nm, where interference with the broadband third harmonic generated by the same pulse is observed. The interference pattern is sensitive to the carrier–envelope phase of the laser pulse. The analysis of the interference pattern provides information on the difference of the spectral phases of the soliton and third harmonic in the spectral range wider than an octave and allows one to control the duration of pulses formed in the process of soliton self-compression.

作者简介

I. Savitskiy

Faculty of Physics, Moscow State University

Email: a.b.fedotov@physics.msu.ru
119991, Moscow, Russia

A. Voronin

Faculty of Physics, Moscow State University;Russian Quantum Center

Email: a.b.fedotov@physics.msu.ru
119991, Moscow, Russia;121205, Skolkovo, Moscow, Russia

E. Stepanov

Faculty of Physics, Moscow State University;Russian Quantum Center

Email: a.b.fedotov@physics.msu.ru
119991, Moscow, Russia;121205, Skolkovo, Moscow, Russia

A. Lanin

Faculty of Physics, Moscow State University;Russian Quantum Center

Email: a.b.fedotov@physics.msu.ru
119991, Moscow, Russia;121205, Skolkovo, Moscow, Russia

A. Fedotov

Faculty of Physics, Moscow State University;Russian Quantum Center

编辑信件的主要联系方式.
Email: b.fedotov@physics.msu.ru
119991, Moscow, Russia;121205, Skolkovo, Moscow, Russia

参考

  1. A. Wirth, M.T. Hassan, I. Grguraˇs, J. Gagnon, A. Moulet, T.T. Luu, S. Pabst, R. Santra, Z.A. Alahmed, A.M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, Science 334, 195 (2011).
  2. S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J.R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, and G. Cerullo, Nat. Photonics 5, 475 (2011).
  3. E. Ridente, M. Mamaikin, N. Altwaijry, D. Zimin, M. F. Kling, V. Pervak, M. Weidman, F. Krausz, and N. Karpowicz, Nat. Commun. 13, 1111 (2022).
  4. P.B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
  5. G. Vampa, T. J. Hammond, N. Thir'e, B. E. Schmidt, F. L'egar'e, C.R. McDonald, T. Brabec, and P.B. Corkum, Nature 522, 462 (2015).
  6. O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S.W. Koch, and R. Huber, Nat. Photonics 8, 119 (2014).
  7. A. Baltuˇska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, and T.W. H¨ansch, Nature 421, 611 (2003).
  8. M. Kreß, T. L¨offler, M.D. Thomson, R. D¨orner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H.G. Roskos, Nat. Phys. 2, 327 (2006).
  9. A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. M¨uhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J.V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, Nature 493, 70 (2013).
  10. F. Krausz and M. I. Stockman, Nat. Photonics 8, 205 (2014).
  11. M. Lucchini, S.A. Sato, A. Ludwig, J. Herrmann, M. Volkov, L. Kasmi, Y. Shinohara, K. Yabana, L. Gallmann, and U. Keller, Science 353, 916 (2016).
  12. G.P. Agrawal, Nonlinear Fiber Optics, fifth edition, Academic Press, N.Y. (2013).
  13. С.А. Ахманов, В.А. Выслоух, А.С. Чиркин, Оптика фемтосекундных лазерных импульсов, Наука, М. (1988).
  14. T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
  15. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
  16. T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A.A. Voronin, A.M. Zheltikov, F. Gerome, G.G. Paulus, A. Baltuska, and F. Benabid, Nat. Commun. 6, 6117 (2015).
  17. U. Elu, M. Baudisch, H. Pires, F. Tani, M.H. Frosz, F. K¨ottig, A. Ermolov, P. St. J. Russell, and J. Biegert, Optica 4, 1024 (2017).
  18. E.A. Stepanov, A.A. Voronin, F. Meng, A.V. Mitrofanov, D.A. Sidorov-Biryukov, M.V. Rozhko, P.B. Glek, Y. Li, A.B. Fedotov, A. Pugˇzlys, A. Baltuˇska, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A.M. Zheltikov, Phys. Rev. A 99, 033855 (2019).
  19. A.A. Voronin and A.M. Zheltikov, Phys. Rev. A 90, 043807 (2014).
  20. L. Berg'e, C.-L. Soulez, C. K¨ohler, and S. Skupin, Appl. Phys. B 103, 563 (2011).
  21. C. Gong, J. Jiang, C. Li, L. Song, Z. Zeng, Y. Zheng, J. Miao, X. Ge, Y. Deng, and R. Li, Opt. Express 21, 24120 (2013).
  22. Y. Zhong, H. Diao, Z. Zeng, Y. Zheng, X. Ge, R. Li, and Z. Xu, Opt. Express 22, 29170 (2014).
  23. E. Zaloznaya, V. Kompanets, A. Savvin, A. Dormidonov, S. Chekalin, and V. Kandidov, Laser. Phys. Lett. 19, 075402 (2022).
  24. P. Steinleitner, N. Nagl, M. Kowalczyk, J. Zhang, V. Pervak, C. Hofer, A. Hudzikowski, J. Sotor, A. Weigel, F. Krausz, and K. F. Mak, Nat. Photonics 16, 512 (2022).
  25. A. J. Lind, A. Kowligy, H. Timmers, F.C. Cruz, N. Nader, M.C. Silfies, T.K. Allison, and S.A. Diddams, Phys. Rev. Lett. 124, 133904 (2020).
  26. I.V. Savitsky, E.A. Stepanov, A.A. Lanin, A.B. Fedotov, and A.M. Zheltikov, ACS Photonics 9, 1679 (2022).
  27. G. Fan, T. Balˇci¯unas, C. Fourcade-Dutin, S. Haessler, A.A. Voronin, A.M. Zheltikov, F. G'erˆome, F. Benabid, A. Baltuˇska, and T. Witting, Opt. Express 24, 12713 (2016).
  28. L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
  29. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
  30. M. Zeisberger and M.A. Schmidt, Sci. Rep. 7, 11761 (2017).
  31. Л.В. Келдыш, ЖЭТФ 47, 1945 (1965).
  32. А.М. Переломов, В.С. Попов, М. В. Терентьев, ЖЭТФ 50, 1393 (1966).
  33. И.В. Савицкий, Е.А. Степанов, А.А. Ланин, А.Б. Федотов, Письма в ЖЭТФ 117, 285 (2023).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023