Сегнетоэлектрические транзисторы: принципы работы, материалы, приложения
- Авторы: Резнюков А.Ю.1,2, Фетисенкова К.А.1,3, Рогожин А.Е.1,2,3
-
Учреждения:
- Национальный исследовательский центр “Курчатовский институт”
- Московский энергетический институт
- Московский физико-технический институт
- Выпуск: Том 54, № 2 (2025)
- Страницы: 164-181
- Раздел: ПРИБОРЫ
- URL: https://vestnik.nvsu.ru/0544-1269/article/view/687129
- DOI: https://doi.org/10.31857/S0544126925020069
- EDN: https://elibrary.ru/FUWBHY
- ID: 687129
Цитировать
Аннотация
Приложения, связанные с применением искусственного интеллекта (ИИ) и интернета вещей, требуют высокопроизводительных вычислительных систем. Современные цифровые нейроморфные сопроцессоры, которые изготавливаются по КМОП-технологии, неэффективны при выполнении нейросетевых алгоритмов, из-за ограничений архитектуры фон-Неймана. Перспективное направление для исследований – интегральные схемы на основе энергонезависимых сегнетоэлектрических транзисторов. В работе приведен обзор исследований, посвященных сегнетоэлектрическим материалам, характеристикам сегнетоэлектрических транзисторов и методам их исследования.
Ключевые слова
Полный текст

Об авторах
А. Ю. Резнюков
Национальный исследовательский центр “Курчатовский институт”; Московский энергетический институт
Автор, ответственный за переписку.
Email: RezniukovAY@mpei.ru
Россия, Москва; Москва
К. А. Фетисенкова
Национальный исследовательский центр “Курчатовский институт”; Московский физико-технический институт
Email: fetisenkova@ftian.ru
Россия, Москва; Москва
А. Е. Рогожин
Национальный исследовательский центр “Курчатовский институт”; Московский энергетический институт; Московский физико-технический институт
Email: rogozhin@ftian.ru
Россия, Москва; Москва; Москва
Список литературы
- Dong W. et al. Ferroelectric materials for neuroinspired computing applications, Fundamental Research, September 2024, V. 4, Iss. 5, P. 1272–1291.
- Yoon S.-K. et al. Design of DRAM-NAND flash hybrid main memory and Q-learning-based prefetching method, J. Supercomp., 2018, V. 74, P. 5293.
- Liao C.-Y. et al. Multipeak coercive electric-field-based multilevel cell nonvolatile memory with antiferroelectric-ferroelectric Field-Effect Transistors (FETs), IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2022, V. 69, P. 2214–2221.
- Sugibuchi K., Kurogi Y., Endo N. Ferroelectric field-effect memory device using Bi4Ti3O12 film, J. Appl. Phys., 1975, V. 46, P. 2877–2881.
- Chauhan N. et al. Negative to-Positive Differential Resistance Transition in Ferroelectric FET: Physical Insight and Utilization in Analog Circuits, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 2022, V. 69, P. 430–437.
- Katsouras I. et al. Controlling the on/off current ratio of ferroelectric field- effect transistors, Sci. Rep. 5, 2015, P. 12094.
- Scott J.F. Ferroelectric Memories, Springer, 2000, Vol. 3.
- Орлов О.М., Маркеев А.М., Зенкевич А.В., Черникова А.Г., Спиридонов М.В., Измайлов Р.А., Горнев Е.С. Исследование характеристик и особенностей изготовления элементов энергонезависимой памяти fram, полученных с использованием процессов атомно-слоевого осаждения, Микроэлектроника, 2016, том 45, № 4, с. 280–288.
- Böscke T. et al. Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors, IEEE, 2011, In 2011 Int. Electron Devices Meeting 24.5.1–24.5.4.
- Böscke T. et al. Phase transitions in ferroelectric silicon doped hafnium oxide, Appl. Phys. Lett., 2011, V. 99, P. 112904.
- Keshavarzi A., van den Hoek W. Edge intelligence – on the challenging road to a trillion smart connected iot devices, IEEE Des. Test, 2019, V. 36, P. 41–64.
- Mushkolaj S. The origin of the spontaneous electric polarization, arXiv:0810.4088, 2008, P. 1.
- Said S.M., Sabri M.F.M., Salleh F. Ferroelectrics and Their Applications, Reference Module in Materials Science and Materials Engineering, 2017.
- Bush A. Pyroelectric effect and its applications, Moscow, MIREA, January 2005, P. 18.
- Si M. et al. A ferroelectric semiconductor field-effect transistor, Nat. Electron., 2019, V. 2, P. 580.
- Mulaosmanovic H. et al. Mimicking biological neurons with a nanoscale ferroelectric transistor, Nanoscale, 2018, V. 10, P. 21755–21763.
- Kimand K., Lee S. Integration of lead zirconium titanate thin films for high density ferroelectric random access memory, J. Appl. Phys., 2006, V. 100, 051604.
- Liu X., Liu Y., Chen W., Li J., Liao L. Ferroelectric memory based on nanostructures, Nanoscale Res. Lett., 2012, V. 7, P. 285.
- Yurchuk E. et al. Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories, IEEE Trans. Electron Devices, 2016, V. 63, P. 3501.
- Shiraneand G., Suzuki K. Crystal structure of Pb(Zr-Ti)O3, J. Phys. Soc. Jpn., 1952, V. 7, P. 333.
- Haertling G.H. Ferroelectric ceramics: History and technology, Ferroelectricity, 2007, 818, P. 157.
- Newnham R.E. Molecular mechanisms in smart materials, MRS Bull., 1997, Vol. 22, P. 20.
- Ko C. et al. Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory, Adv. Mater., 2016, V. 28, P. 2923.
- Lee B.W. Synthesis and characterization of compositionally modified PZT by wet chemical preparation from aqueous solution, J. Eur. Ceram. Soc., 2004, V. 24, P. 925.
- Qi H., Xia X., Zhou C., Xiao P., Wang Y., Deng Y. Ferroelectric properties of the flexible Pb(Zr0.52Ti0.48)O3 thin film on mica, J. Mater. Sci. Mater. Electron., 2020, V. 31, P. 3042.
- Schroeder R., Majewski L.A., Grell M. All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator, Adv. Mater., 2004, V. 16, P. 633.
- Li H., Wang R., Han S.T., Zhou Y. Ferroelectric polymers for non-volatile memory devices: A review, Polym. Int., 2020, V. 69, P. 533.
- Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers, Phase Transitions, 1989, V. 18, P. 143.
- Hasegawa R., Takahashi Y., Chatani Y., Tadokoro H. Crystal structures of three crystalline forms of poly(vinylidene fluoride), Polym. J., 1972, V. 3, P. 600.
- García-Gutiérrez M.-C. et al. Understanding crystallization features of P(VDF-TrFE) copolymers under confinement to optimize ferroelectricity in nanostructures, Nanoscale, 2013, V. 5, P. 6006.
- Tsai M.-F. et al. Oxide heteroepitaxy-based flexible ferroelectric transistor, ACS Appl. Mater. Interfaces, 2019, V. 11, P. 25882.
- Fischerand D., Kersch A. The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles, Appl. Phys. Lett., 2008, V. 92, 012908.
- Lun X. et al. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films, Journal of applied physics, 2017, № 122, 124104.
- Schroeder U. et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide, Japanese Journal of Applied Physics, 2014, V. 53, 08LE02.
- Böscke T.S., Müller J., Bräuhaus D., Schröder U., Böttger U. Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett., 2011, V. 99, 102903.
- Zarubin S. et al. Fully ALD-grown TiN/Hf0.5Zr0.5O2/TiN stacks: Ferroelectric and structural properties, Appl. Phys. Lett., 2016, V. 109, 192903.
- Kim S.J. et al. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget, Appl. Phys. Lett., 2017, V. 111, 242901.
- Kozodaev M.G. et al. La-doped Hf0.5Zr0.5O2 thin films for high-efficiency electrostatic supercapacitors, Applied physics letters, 2018, V. 113, 123902.
- Kozodaev M.G. et al. Mitigating wakeup effect and improving endurance of ferroelectric HfO2–ZrO2 thin films by careful La-doping, J. Appl. Phys., 2019, V. 125, 034101.
- Kim H.J. et al. Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer, Appl. Phys. Lett., 2014, V. 105, 192903.
- Zhang S. et al. Low voltage operating 2D MoS2 ferroelectric memory transistor with Hf1–xZrxO2 gate structure, Nanoscale Res. Lett., 2020, V. 15, P. 157.
- Mikolajick T., Slesazeck S., Park M.H., Schroeder U. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric fieldeffect transistors, MRS Bull., 2018, V. 43, P. 340.
- Zhou Y. et al. Out-of-Plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes, Nano Lett., 2017, V. 17, P. 5508.
- Majdoub M.S., Maranganti R., Sharma P. Understanding the origins of the intrinsic dead-layer effect in nanocapacitors, Physical review B, 2009, V. 79, 115412.
- Фетисенкова K.A., Рогожин A.E. Нейроморфные системы: приборы, архитектура и алгоритмы, Микроэлектроника, 2023, том 52, № 5, с. 404–422.
- Oh S., Hwang H., Yoo I.K. Ferroelectric materials for neuromorphic computing, APL Materials, 2019, V. 7(9), 091109.
- Jerry M. et al. Ferroelectric FET analog synapse for acceleration of deep neural network training, IEEE International Electron Devices Meeting (IEDM), 2017.
- George S. et al. Nonvolatile memory design based on ferroelectric FETs, Proceedings of the 53rd Annual Design Automation Conference on – DAC ’16, 2016.
- Salahuddin S., Datta S. Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices, Nano Letters, 2008, V. 8(2), P. 405–410.
- Yu E. et al. Ferroelectric FET Based Coupled-Oscillatory Network for Edge Detection, IEEE Electron Device Lett., 2021, V. 42, P. 1670–1673.
- Ajayan J. et al. Ferroelectric Field Effect Transistors (FeFETs): Advancements, challenges and exciting prospects for next generation Non-Volatile Memory (NVM) applications, Materials Today Communications, 2023, V. 35, 105591.
- Jiao H., Wang X., Wu S. et al. Ferroelectric field effect transistors for electronics and optoelectronics, Appl. Phys. Rev., 2023, V. 10, 011310.
- Tang M. et al. Impact of HfTaO Buffer Layer on Data Retention Characteristics of Ferroelectric-Gate FET for Nonvolatile Memory Applications, IEEE Trans. Electron Devices, 2011, V. 58, P. 370–375.
- Liu H. et al. ZrO2 Ferroelectric FET for Non-volatile Memory Application, IEEE Electron Device Lett., 2019, V. 40, P. 1419–1422.
- Noh J. et al. First Experimental Demonstration of Robust HZO/β-Ga2O3 Ferroelectric Field-Effect Transistors as Synaptic Devices for Artificial Intelligence Applications in a High-Temperature Environment, IEEE Trans. Electron Devices, 2021, V. 68, P. 2515–2521.
- Schroeder R., Majewski L., Grell M. All-Organic Permanent Memory Transistor Using an Amorphous, Spin-Cast Ferroelectric-like Gate Insulator, Adv. Mater., 2004, V. 16, P. 633–636.
- Hoffmann M. et al. Fast read-after-write and depolarization fields in high endurance n-type ferroelectric FETs, IEEE Electron Device Lett., 2022, V. 43, P. 717–720.
- Shu-Yau W. A new ferroelectric memory device, metal-ferroelectric semiconductor transistor, IEEE Trans. Electron Devices, 1974, V. 21, P. 499–504.
- Yurchuk E. et al. Impact of Scaling on the Performance of HfO2-Based Ferroelectric Field Effect Transistors, IEEE Trans. Electron Devices, 2014, V. 61, P. 3699–3706.
- Luo J.-D. et al. Atomic Layer Deposition Plasma-Based Undoped-HfO2 Ferroelectric FETs for Non-Volatile Memory, IEEE Electron Device Lett., 2021, V. 42, P. 1152–1155.
- Xu M. et al. High Mobility Flexible Ferroelectric Organic Transistor Nonvolatile Memory With an Ultrathin AlOX Interfacial Layer, IEEE Trans. Electron Devices, 2018, V. 65, P. 1113–1118.
- Yan S.-C. et al. High Speed and Large Memory Window Ferroelectric HfZrO2 FinFET for High-Density Nonvolatile Memory, IEEE Electron Device Lett., 2021, V. 42, P. 1307–1310.
- Liu B. et al. Excellent ferroelectric Hf0.5Zr0.5O2 thin films with ultra-thin Al2O3 serving as capping layer, Applied Physics Letters, 2021, V. 119, № 17.
- Goh Y. et al. Ultra-thin Hf0.5Zr0.5O2 thin-film-based ferroelectric tunnel junction via stress induced crystallization, Applied Physics Letters, 2020, V. 117, № 24.
- Мяконьких A.B., Смирнова Е.А., Клементе И.Э. Применение метода спектральной эллипсометрии для исследования процессов атомно-слоевого осаждения, Микроэлектроника, 2021, том 50, № 4, с. 264–273.
- Hamouda W. et al. Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface, Journal of Applied Physics, 2020, V. 127, № 6.
- Chouprik A. et al. Wake-up free ultrathin ferroelectric Hf0.5Zr0.5O2 films, Nanomaterials, 2023, V. 13, № 21, P. 2825.
- Park M.H. et al. Study on the size effect in Hf0.5Zr0.5O2 films thinner than 8 nm before and after wake-up field cycling, Appl. Phys. Lett., 2015, V. 107(19), 192907.
- Schenk T. et al. On the origin of the large remanent polarization in La: HfO2, Adv. Electron. Mater, 2019, V. 5(12), 1900303.
- Hamouda W. et al. Oxygen vacancy concentration as a function of cycling and polarization state in TiN/Hf0.5Zr0.5O2/TiN ferroelectric capacitors studied by x-ray photoemission electron microscopy, Applied Physics Letters, 2022, V. 120, № 20.
- Goh Y. et al. Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrode, Nanoscale, 2020, V. 12, № 16, P. 9024–9031.
- Giannazzo F. et al. Conductive AFM of 2D Materials and Heterostructures for Nanoelectronics, Electrical Atomic Force Microscopy for Nanoelectronics, 2019.
- Chouprik A. et al. Ferroelectricity in Hf0.5Zr0.5O2 thin films: A microscopic study of the polarization switching phenomenon and field-induced phase transformations, ACS applied materials & interfaces, 2018, V. 10, № 10, P. 8818–8826.
- Martin S. et al. A new technique based on current measurement for nanoscale ferroelectricity assessment: Nano-positive up negative down, Review of Scientific Instruments, 2017, V. 88, № 2.
- Florent K. Ferroelectric HfO2 for emerging ferroelectric semiconductor devices, Rochester Institute of Technology, 2015.
- Stauffer L. Fundamentals of semiconductor c-v measurements, Keithley, 2009.
- Schenk T. et al. Complex internal bias fields in ferroelectric hafnium oxide, ACS applied materials & interfaces, 2015, V. 7, № 36, P. 20224–20233.
- Genenko Y.A. et al. Mechanisms of aging and fatigue in ferroelectrics, Materials Science and Engineering: B, 2015, V. 192, P. 52–82.
- Jiang P. et al. Wake‐up effect in HfO2‐based ferroelectric films, Advanced Electronic Materials, 2021, V. 7, № 1, P. 2000728.
- Zhou Y. et al. Mechanisms of imprint effect on ferroelectric thin films, Journal of applied physics, 2005, V. 98, № 2.
- Schenk T. et al. About the deformation of ferroelectric hystereses, Applied physics reviews, 2014, V. 1, № 4.
- Park J.Y. et al. A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials–device integration perspective, Journal of Applied Physics, 2020, P. 128, № 24.
- Shao X. et al. Investigation of Endurance Degradation Mechanism of Si FeFET With HfZrO Ferroelectric by an In Situ V th Measurement, IEEE Transactions on Electron Devices, 2023, P. 70, № 6, P. 3043–3050.
- Tarek A. et al. A FeFET with a novel MFMFIS gate stack: towards energy-efficient and ultrafast NVMs for neuromorphic computing, Nanotechnology, 2021, V. 32, 425201.
- Gong N. Ma T.-P. A Study of Endurance Issues in HfO2-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation, IEEE Electron Device Letters, 2018, V. 39(1), P. 15–18.
- Shujing Z. et al. Experimental Extraction and Simulation of Charge Trapping during Endurance of FeFET with TiN/HfZrO/SiO2/Si (MFIS) Gate Structure, IEEE Transactions on Electron Devices, 2022, V. 69, Issue 3.
- Zeng B. et al. Program/Erase Cycling Degradation Mechanism of HfO2-Based FeFET Memory Devices, IEEE Electron Device Lett., 2019, V. 40, P. 710–713.
- Mulaosmanovic H. et al. Ferroelectric FETs With 20-nm-Thick HfO2 Layer for Large Memory Window and High Performance, IEEE Trans. Electron Devices, 2019, V. 66, P. 3828–3833.
- Ali T. et al. A Study on the Temperature-Dependent Operation of FluoriteStructure- Based Ferroelectric HfO2 Memory FeFET: Pyroelectricity and Reliability, IEEE Trans. Electron Devices, 2020, V. 67, P. 2981–2987.
- Chen K.-Y., Tsai Y.-S., Wu Y.-H. Ionizing Radiation Effect on Memory Characteristics for HfO2-Based Ferroelectric Field-Effect Transistors, IEEE Electron Device Lett., 2019, V. 40, P. 1370–1373.
- Higashi Y. et al. Impact of Charge Trapping and Depolarization on Data Retention Using Simultaneous P–V and I–V in HfO2-Based Ferroelectric FET, IEEE Trans. Electron Devices, 2021, V. 68, P. 4391–4396.
- Liu C. et al. Hf0.5Zr0.5O2-Based Ferroelectric Field-Effect Transistors With HfO2 Seed Layers for Radiation-Hard Nonvolatile Memory Applications, IEEE Trans. Electron Devices, 2021, V. 68, P. 4368.
- Liu Y. et al. Investigation of the Impact of Externally Applied Out-of-Plane Stress on Ferroelectric FET, IEEE Electron Device Lett., 2021, V. 42, P. 264–267.
- Ren C. et al. Highly robust flexible ferroelectric field effect transistors operable at high temperature with low-power consumption, Adv. Funct. Mater., 2020, V. 30, 1906131.
- Maand T.P., Gong N. Retention and endurance of FeFET memory cells, IEEE, 2019, in 2019 IEEE11th International Memory Workshop IMW, Vol. 2019, P. 1.
- Mikolajick T. et al. Hafnium oxide based ferroelectric devices for memories and beyond, IEEE, 2018, in 2018 International Symposium on VLSI Technology, Systems and Application, Vol. 1.
- Lee Y.R., Trung T.Q., Hwang B.-U., Lee N.-E. A flexible artificial intrinsic-synaptic tactile sensory organ, Nat. Commun, 2020, V. 11, P. 2753.
- Chen X., Han X., Shen Q.-D. PVDF-based ferroelectric polymers in modern flexible Electronics, Adv. Electron. Mater, 2017, V. 3, 1600460.
- Chen L. et al. A van der Waals synaptic transistor based on ferroelectric Hf0.5Zr0.5O2 and 2D tungsten disulfide, Adv. Electron. Mater., 2020, V. 6, 2000057.
- Osadaand M., Sasaki T. The rise of 2D dielectrics/ferroelectrics, APL Mater., 2019, V. 7, 120902.
- Rodriguez J.R. et al. Electric field induced metallic behavior in thin crystals of ferroelectric α-In2Se3, Appl. Phys. Lett., 2020, V. 117, 052901.
- Li Y., Gong M., Zeng H. Atomically thin α-In2Se3: An emergent twodimensional room temperature ferroelectric semiconductor, J. Semicond, 2019, V. 40, 061002.
Дополнительные файлы
