FEATURES OF ORGANOPHOSPHATES IMMOBILIZATION VIA STREPTAVIDIN-BIOTIN SYSTEM FOR EXPERIMENTS ON SELECTION OF APTAMERS

Cover Page

Cite item

Full Text

Abstract

Poisoning with organophosphorus compounds occupy one of the leading places in exotoxicosis. At the first stage, the detoxification of organophosphates can be provided with the help of DNA or RNA aptamers that bind the poison in the bloodstream. Currently, the main method of searching for aptamers is the experimental method of systematic evolution of ligands by exponential enrichment (SELEX). In the process of aptamer selection, the target molecule must be immobilized via the streptavidin-biotin complex. Since the poison molecule is small in size, to increase its availability for binding to aptamer, it is necessary to use a spacer between organophosphorus compounds and biotin. The aim of this work was to optimize the selection of aptamers for organophosphorus compounds by increasing the availability of a poison molecule immobilized via the streptavidin-biotin complex on the example of paraoxon. For this purpose, three spacers between organophosphorus compounds and biotin were tested using molecular modeling methods: three links of polyethylene glycol (3-PEG), four links of polyethylene glycol (4-PEG) and aminohexyl. The conformation of the biotinylated paraoxon complex with streptavidin and the interaction of paraoxon with the binding fragment of the aptamer were modeled using molecular docking and molecular dynamics methods. The ability of biotinylated paraoxon to bind to the aptamer has been evaluated by analyzing the surface area of the paraoxon available to the solvent, as well as by calculating the free binding energies. It has been shown that only in the case of aminohexyl immobilized paraoxon can contact the aptamer. At the final stage, the synthesis of paraoxon bound to biotin via aminohexyl was carried out.

About the authors

D. A. Belinskaya

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: d_belinskaya@mail.ru

Belinskaya Daria Alexandrovna

194223, Saint Petersburg

Russian Federation

Yu. V. Chelusnova

Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency

Email: chelusnovayulia@mail.ru

Chelusnova Yulia Victorovna

188663, p.o. Kuz’molovsky, Leningrad Region

Russian Federation

V. V. Abzianidze

Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency

Email: fake@neicon.ru

Abzianidze Victoria Vadimovna

188663, p.o. Kuz’molovsky, Leningrad Region

Russian Federation

N. V. Goncharov

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences; Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency

Email: ngoncharov@gmail.com

Goncharov Nikolay Vasil’evich

194223, Saint Petersburg

188663, p.o. Kuz’molovsky, Leningrad Region

Russian Federation

References

  1. King A.M., Aaron C.K. Organophosphate and carbamate poisoning. Emerg. Med. Clin. North Am. 2015; 33: 133-51.
  2. Ku T.H., Zhang T., Luo H., Yen T.M., Chen P.W., Han Y. et al. Nucleic acid aptamers: an emerging tool for biotechnology and biomedical sensing. Sensors (Basel) 2015; 15: 16281-313.
  3. Darmostuk M., Rimpelova S., Gbelcova H., Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol. Adv. 2015; 33: 1141-61.
  4. Bing T., Yang X., Mei H., Cao Z., Shangguan D. Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories. Bioorg. Med. Chem. 2010; 18(5): 1798-805.
  5. Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998; 19: 1639-62.
  6. Froimowitz M. HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques 1993; 14: 1010-13.
  7. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H. et al. The Protein Data Bank. Nucleic Acids Res. 2000; 28: 235-42.
  8. Le Trong I., Wang Z., Hyre D.E., Lybrand T.P., Stayton P.S., Stenkamp R.E. Streptavidin and its biotin complex at atomic resolution. Acta Crystallogr. D. Biol. Crystallogr. 2011; 67: 813-21.
  9. Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1-2: 19-25.
  10. Zhu X., Lopes P.E., Mackerell A.D. Jr. Recent developments and applications of the CHARMM force fields. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012; 2: 167-85.
  11. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., Hermans J. Interaction models for water in relation to protein hydration. In: Pullman B., ed. Intermolecular forces. Dordrecht: Reidel D. Publishing Company; 1981: 331-42.
  12. Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007; 126: 014101.
  13. Berendsen H.J.C., Postma J.P.M., di Nola A., van Gunsteren W.F., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984; 81: 3684-90.
  14. Darden T., York D., Pedersen L. Particle mesh Ewald: An NŽlog(N) method for Ewald sums in large systems. J. Chem. Phys. 1993; 3: 10089-92.
  15. Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comp. Chem. 1997; 8: 1463-73.
  16. Genheden S., Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligandbinding affinities. Expert Opin. Drug Discov. 2015; 10: 449-61.
  17. Kumari R., Kumar R. Open Source Drug Discovery Consortium, Lynn A. g_mmpbsa – a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014; 54: 1951-62.
  18. Shizuka M., Schrader T.O., Snapper M.L. Synthesis of isoprostanyl phosphatidylcholine and isoprostanyl phosphatidylethanolamine. J. Org. Chem. 2006; 71(4): 1330-4
  19. Itoyama K., Tanibe H., Hayashi T., Ikada Y. Spacer effects on enzymatic activity of papain immobilized onto porous chitosan beads. Biomaterials 1994; 15(2): 107-12.
  20. Han X., Liu Y., Wu F.-G., Jansensky J., Kim T., Wang Z. et al. Different interfacial behaviors of peptides chemically immobilized on surfaces with different linker lengths and via different termini. J. Phys. Chem. B 2014; 118: 2904-12.
  21. Panman W., Japrung D., Pongprayoon P. Exploring the interactions of a DNA aptamer with human serum albumins: simulation studies. J. Biomol. Struct. Dyn. 2017; 35(11): 2328-36.
  22. Silva D., Missailidis S. Analyzing models for interactions of aptamers to proteins. AIP Conf. Proc. 2014; 1618: 594-7.
  23. Goncharov N.V., Belinskaia D.A., Shmurak V.I., Terpilowski M.A., Jenkins R.O., Avdonin P.V. Serum albumin binding and esterase activity: mechanistic interactions with organophosphates. Molecules 2017; 22: E1201.
  24. Trapaidze A., Herault J.P., Herbert J.M., Bancaud A., Gue A.M. Investigation of the selectivity of thrombin-binding aptamers for thrombin titration in murine plasma. Biosensors and Bioelectronics 2016; 78: 58-66.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Belinskaya D.A., Chelusnova Y.V., Abzianidze V.V., Goncharov N.V.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.