CYTOLOGICAL AND BIOCHEMICAL CHARACTERISTICS OF BRONCHOALVEOLAR LAVAGE FLUID IN RATS AFTER INTRATRACHEAL INSTILLATION OF COPPER OXIDE NANO-SCALE PARTICLES

Cover Page

Cite item

Full Text

Abstract

Stable water suspensions of copper oxide particles with the mean diameter of 20 nm and copper oxide-copper ones with the mean diameter of 340 nm were used to assess the rats pulmonary phagocytosis response to a single intratracheal instillation of 0.5 mg(1 ml) of these suspensions followed by the bronchoalveolar lavage after 24 hours with the help of optical, transmission electron, and semi-contact atomic force microscopy and a number of biochemical indices measured in the bronchoalveolar lavage fluid. It was found out that the two fractions produce an expressed toxic effect on lungs but nanoparticles appear significantly more toxic than sub-micron particles greater than 100 nm in size while the former evokes a more pronounced defense recruitment of alveolar macrophages and especially of neutrophil leukocytes at a higher phagocytosis activity of these cells. Results obtained compared to literature data show that a high cytotoxic action of nanometer copper oxide particles may be caused both by a copper ions intracellular release at solubilization and direct contact of persistent particles internalized by phagocytes with cell organelles (primarily, mitochondria) and their injuryas well.

About the authors

Larisa Ivanovna Privalova

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers

Author for correspondence.
Email: noemail@neicon.ru

Доктор медицинских наук, профессор, заведующая лабораторией научных основ биопрофилактики ФБУН  МНЦПОЗРПП. 620014, г. Екатеринбург

e-mail: privalovali@yahoo.com

Russian Federation

Boris Aleksandrovich Katsnelson

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers

Email: noemail@neicon.ru

Доктор медицинских наук, профессор, заведующий отделом токсикологии и биопрофилактики ФБУН ЕМНЦПОЗРПП. 620014, г. Екатеринбург

e-mail: bkaznelson@etel.ru

Russian Federation

Nadezhda Vladimirovna Loginova

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers

Email: noemail@neicon.ru

Научный сотрудник лаборатории научных основа биопрофилактики ФБУН ЕМНЦПОЗРПП. 620142, г. Екатеринбург,

e-mail: loginovan@ymrc.ru

Russian Federation

Vladimir Borisovich Gurvich

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers

Email: noemail@neicon.ru

Доктор медицинских наук, директор ФБУН ЕМНЦПОЗРПП; 620014, г. Екатеринбург.

e-mail: gurvich@ymrc.ru

Russian Federation

Vladimir Yakovlevich Shur

The Centre for collective use «Modern Nanotechnologies», Ural Federal University

Email: noemail@neicon.ru

Доктор физико-математических наук, профессор, директор Центра коллективного пользования «Современные нанотехнологии», 620000, г. Екатеринбург

e-mail: vladimir.shur@usu.ru

Russian Federation

Yakov Borisovich Beikin

The City Clinical Diagnostics Centre

Email: noemail@neicon.ru

Доктор медицинских наук, профессор, директор МУ «Клинико-диагностический центр», 620142, г. Екатеринбург

e-mail: kdc_boss@mail.ru

Russian Federation

Marina Petrovna Sutunkova

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers

Email: noemail@neicon.ru

Кандидат медицинских наук, старший научный сотрудник отдела токсикологии и биопрофилактики ФБУН ЕМНЦПОЗРПП, 620014, г. Екатеринбург

e-mail: sutunkova@ymrc.ru

Russian Federation

Ilzira Amirovna Minigalieva

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers

Email: noemail@neicon.ru

Кандидат биологических наук, старший научный сотрудник отдела токсикологии и биопрофилактики ФБУН ЕМНЦПОЗРПП, 620014, г. Екатеринбург

e-mail: ilzira-minigalieva@yandex.ru

Russian Federation

Ekaterina Vladimirovna Shishkina

The Centre for collective use «Modern Nanotechnologies», Ural Federal University

Email: noemail@neicon.ru

Кандидат физико-математических наук, старший научный сотрудник Центра коллективного пользования «Современные нано технологии», 620000, г. Екатеринбург

e-mail: ekaterina.shishkina@labfer.usu.ru

Russian Federation

Svetlana Vladimirovna Pichugova

The City Clinical Diagnostics Centre

Email: noemail@neicon.ru

Специалист лаборатории электронной микроскопии «Клинико-диагностический центр», 620142, г. Екатеринбург

e-mail: ekb-lem@mail.ru

Russian Federation

Ludmila Gennadevna Tulakina

The City Clinical Diagnostics Centre

Email: noemail@neicon.ru

Кандидат медицинских наук, заведующий лабораторией электронной микроскопии «Клинико-диагностический центр», 620142, г. Екатеринбург

e-mail: tulakina@inbox.ru

Russian Federation

Svetlana Valentinovna Beljayeva

The City Clinical Diagnostics Centre

Email: noemail@neicon.ru

Кандидат биологических наук, заведующий биохимической лабораторией МУ «Клинико-диагностический центр», 620142, г. Екатеринбург

e-mail: kdc_boss@mail.ru

Russian Federation

Vadim Olegovich Rusakov

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers

Email: noemail@neicon.ru

Аспирант ФБУН ЕМНЦ ПОЗРПП, 620014, г. Екатеринбург

e-mail: ruzakov_vo@66.rospotrebnadzor.ru

Russian Federation

References

  1. Warheit D.B., Reed K.L., Sayes C.M. A role of surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity. Nanotoxicology. 2009; 3: 181–187.
  2. Donaldson K., Stone V., Tran C.K., Kreyling W., Borm P.J. Nanotoxicology (editorial). Occup Environ Med. 2004; 61: 727–728.
  3. Katsnelson B.A., Privalova L.I., Kuzmin S.V., Degtyareva T.D., Sutunkova M.P., Yeremenko O.S., Minigalieva I.A., Kireyeva E.P., Khodos M.Y., Kozitsina A.N. et al. Some peculiarities of pulmonary clearance mechanisms in rats after intratracheal instillation of magnetite (Fe3O4) suspensions with different particle sizes in the nanometer and micrometer ranges: Are we defenseless against nanoparticles? Int. J. Occup. Environ. Health. 2010; 16: 508–524.
  4. Katsnelson B.A., Privalova L.I., Degtyareva T.D., Sutunkova M.P., Yeremenko O.S., Minigalieva I.A., KireyevaE.P., Kozitsina A.N., Malakhova N.A., Glazyrina J.A. et al. Experimental estimates of the toxicity of iron oxide Fe3O4 (magnetite) nanoparticles. Cent. Eur. J. Occup. Environ. Med. 2010; 16: 47–63.
  5. Katsnelson B.A., Privalova L.I., Sutunkova M.P., Tulakina L.G., Pichugova S.V., Beikin J.B., Khodos M.Y. The «in vivo» interaction between iron oxide Fe3О4 nanoparticles and alveolar macrophages. Bull. Exp. Biol. Med. 2012; 152: 627–631.
  6. Katsnelson B.A., Privalova L.I., Gurvich V.B., Makeyev O.H., Shur V.Y., Beikin J.B., Sutunkova M.P., Kireyeva E.P., Minigalieva I.A., Loginova N.V. et al. Comparative in vivo assessment of some adverse bio-effects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver’s effects with a complex of innocuous bioprotectors. Int. J. Mol. Sci. 2013; 14: 2449–2483.
  7. Bastus N.G., Casals E., Socorro V.-C., Puntes V. Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media. Nanotoxicology. 2008; 2: 99–112.
  8. Karlsson H.L., Cronholm P., Gustafsson J., Möller L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008; 21: 1726–1732.
  9. Xu J., Li Z., Xu P., Xiao L., Yang Z. Nanosized copper oxide induces apoptosis through oxidative stress in podocytes. Arch. Toxicol. 2013; 87: 1067–1073.
  10. Bondarenko O., Ivask A., Käkinen A., Kahru A. Subtoxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut. 2012; 169: 81–89.
  11. Pang C., Selck H., Misra S.K., Berhanu D., Dybowska A., Valsami-Jones E., Forbes V.E. Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum:A comparison of Cu added in aqueous form or as nano- and micro-CuO particles. Aquat. Toxicol. 2012; 15: 114–122.
  12. Studer A.M., Limbach L.K., van Duc L., Krumeich F., Athanassiou E.K., Gerber L.C., Moch H., Stark W.J. Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol. Lett. 2010; 1: 169–174.
  13. Cronholm P., Karlsson H.L., Hedberg J., Lowe T.A., Winnberg L., Elihn K., Wallinder I.O., Möller L. Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions. Small. 2013; 8: 970–982.
  14. Cuillel M., Chevallet M., Charbonnier P., Fauquant C., Pignot-Paintrand I., Arnaud J., Cassio D., MichaudSoret I., Mintz E. Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. Nanoscale. 2014; 16: 1707–1715.
  15. Chen Z., Meng H., Xing G., Chen C., Zhao Y., Jia G., Wang T., Yuan H., Ye C., Zhao F. et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 2006; 25: 109–120.
  16. Limbach L.K., Studer A.M., Van Duc L. et al. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol. Lett. 2010; 197(3): 169–174.
  17. Alarifi S., Ali D., Verma A., Alakhtani S., Ali B.A. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int. J. Toxicol. 2013; 32: 296–307.
  18. Privalova L.I., Katsnelson B.A., Loginova N.V., Gurvich V.B., Shur V.Y., Valamina I.E. et al. Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int J Mol Sci. 2014;15:12379–12406.
  19. Privalova L.I., Katsnelson B.A., Osipenko A.B., Yushkov B.H., Babushkina L.G. Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity. Environm. Health Perspect.1980; 35: 205–218.
  20. Katsnelson B.A., Privalova L.I. Recruitment of phagocytizing cells into the respiratory tract as a response to the cytotoxic action of deposited particles. Environ Health Perspect.1984; 55: 313–325.
  21. Katsnelson B.A., Konysheva L.K., Privalova L.Y., Sharapova N.Y. Quartz dust retention in rat lungs under chronic exposure simulated by a multicompartmental model: Further evidence of the key role of the cytotoxicity of quartz particles. Inhalat Toxicol. 1997; 9:703–715.
  22. Privalova L.I., Katsnelson B.A., Sharapova N.Y., Kislitsina N.S. On the relationship between activation and the breakdown of macrophages in pathogenesis of silicosis. Med. Lav. 1995; 86: 511–521.
  23. Fröhlich E. Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. J. Curr. Drug. Metab. 2013; 14: 976–988.
  24. Donaldson K., Bolton R., Jones E.A., Brown G. M., Robertson M.D., Slight J., Cowie H., Davis J. M. G. Kinetics of the bronchoalveolar leucocyte response in rats during exposure to equal airborne mass concentrations of quartz, chrysotile asbestos, or titanium dioxide.Thorax. 1988;43: 525–533.
  25. Zhang Q., Yukinori K., Sato K., Nakakuki K., Koyahama N., Domaldson K. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J. Toxicol. and Environmental Health. 1998; 53: 423–438.
  26. Zhang Q., Yukinori K., Zhu X., Sato K., Mo Y., Kluz T., Donaldson K. Comparative toxicity of standard nickel and ultrafine nickel after intratracheal instillation. J. Occip. Health. 2003; 45: 23–30.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Privalova L.I., Katsnelson B.A., Loginova N.V., Gurvich V.B., Shur V.Y., Beikin Y.B., Sutunkova M.P., Minigalieva I.A., Shishkina E.V., Pichugova S.V., Tulakina L.G., Beljayeva S.V., Rusakov V.O.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.