Influence of electron radiation of spring barley seeds on phytopathogenic microflora

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Under the conditions of a model pot experiment, the effect of electron irradiation on the phytopathogenic microflora of plant roots and leaves was studied. The studies were carried out on spring barley seeds of the Vladimir variety (reproduction 1), affected by helminthosporiosis (pathogen Bipolaris sorokiniana Shoem.), (natural infectious background). This pathogen causes root rot and leaf spot. The grain was irradiated using a wide-aperture electron accelerator “Duet” with a mesh plasma cathode and the output of the generated beam of a large cross-section into the atmosphere in doses of 1, 2, 3, 4 and 5 kGy. The total administered dose was increased by changing the number of pulses. The radiation dose rate was 100 Gy/pulse, the electron energy was 130 keV (mode 1) and 160 keV (mode 2). The depth of dose absorption did not exceed 300 μm. Based on the conducted studies on the effect of electron irradiation on root rot (pathogen Bipolaris sorokiniana) of spring barley, it was noted that in the tillering and heading phases, when irradiating seed material with a dose of 2 kGy in mode 1 (130 keV), the disease incidence and prevalence decreased by more than 1.5 times compared to the non-irradiated control. In the phase of full grain maturity, the highest value of root infestation (45–50%) and prevalence (95–100%) of Bipolaris sorokiniana were recorded, but statistically significant differences between the irradiated variants and the control were absent. The records of the damage of vegetative plants showed that in the tillering phase, for all irradiation variants in mode 1, the degree of damage to leaves 1–3 increased by 23% compared to the control, and in the heading phase, the degree of damage to the upper leaves (1–3) exceeded the control when irradiated at doses of 2–5 kGy (mode 1) and 1–5 kGy (mode 2) – 2.1–2.8 times for 1 leaf, 1.9–2.0 times for 2 leaves and 1.2 times for 3 leaves.

全文:

受限制的访问

作者简介

O. Suslova

Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”

编辑信件的主要联系方式.
Email: belovol-1983@mail.ru

Junior Researcher

俄罗斯联邦, Obninsk, Kaluga region

N. Loy

Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”

Email: belovol-1983@mail.ru

PhD in Biological Sciences

俄罗斯联邦, Obninsk, Kaluga region

参考

  1. Bastron A.V., Dolgov I.V. Postanovka problemy obezzarazhivaniya zerna pshenicy EMP SVCh v posleuborochnyj period i puti ee resheniya // Epoha nauki. 2016. № 5. S. 9.
  2. Bespal’ko V.V., Buryak Yu.I. Vliyanie predposevnoj obrabotki semyan mikrovolnovym polem v sochetanii s regulyatorom rosta i biopreparatom na posevnye kachestva i urozhajnye svojstva yachmenya yarovogo // Nauchno-proizvodstvennyj zhurnal «Zernobobovye i krupyanye kul’tury». 2014. № 4 (12). S. 133–138.
  3. Vorob’ev M.S., Denisov V.V., Koval’ N.N. et al. Radiation processing of natural latex using a wide-aperture electron accelerator with a plasma emitter// Himiya vysokih energij. 2015. T. 49. № 3. S. 169–172.
  4. Dovnar V.S. K metodike izmereniya ploshchadi list’ev u zlakovyh kul’tur // S.-h. biologiya. 1979. T. 14. № 2. S. 235–237
  5. Zhurbickij Z.I. Teoriya i praktika vegetacionnogo metoda. M.: Nauka, 1968. S. 206.
  6. Koz’min G.V., Geras’kin S.A., Sanzharova N.I. Radiacionnye tekhnologii v sel’skom hozyajstve i pishchevoj promyshlennosti. Obninsk: VNIIRAE, 2015. S. 400.
  7. Kotin A.I., Novikova G.V., Zajcev P.V. i dr. Issledovanie i razrabotka ustanovki dlya predposadochnoj obrabotki klubnej kartofelya vozdejstviem elektrofizicheskih faktorov // Vestnik Kazanskogo gosudarstvennogo agrarnogo universiteta. 2019. T. 14. № 1 (52). S. 89–93.
  8. Lavrinova V.A., Chekmarev V.V., Gusev I.V. Obshchie principy razvitiya issledovanij po zashchite zernovyh kul’tur ot boleznej v Tambovskoj oblasti // Zemledelie. 2018. № 1. S. 27–31.
  9. Soboleva O.M. Ekologicheskaya ocenka dejstviya elektromagnitnogo polya na semena ozimyh zlakov // Dostizheniya nauki i tekhniki APK. 2017. T. 31. № 11. S 47–49.
  10. Soboleva O.M., Kondratenko E.P., Vityaz’ S.N. Vliyanie elektromagnitnogo polya na aminokislotnyj sostav i biologicheskuyu cennost’ zerna novoj ozimoj kul’tury // Vestnik AGAU. 2015. №11. S. 58–64.
  11. Soboleva O.M. Dinamika chislennosti mikroorganizmov na poverhnosti zernovok rzhi i yachmenya posle elektromagnitnoj obrabotki // Dostizheniya nauki i tekhniki APK. 2018. T. 32. № 9. S. 21–23.
  12. Sokovnin S.Yu. Nanosekundnye uskoriteli elektronov i radiacionnye tekhnologii na ih osnove. Ekaterinburg: UrO RAN, 2007. S. 224
  13. Strategiya nauchno-tekhnologicheskogo razvitiya Rossijskoj Federacii (utv. Ukazom Prezidenta Rossijskoj Federacii ot 1 dekabrya 2016 g. № 642).
  14. Tolmacheva T.A. Aflatoksiny, ih vliyanie na prodovol’stvennoe syr’e i metody obezzarazhivaniya // Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Pishchevye i biotekhnologii. 2013. T. 1. № 2. S. 40–44.
  15. Fizika. Tekhnologii. Innovacii / Pod red. Rychkova V. N., Ekaterinburg: URFU, 2015. 358 s.
  16. Bianchini A., Bullerman L.B. Biological control of molds and mycotoxins in foods. In mycotoxin prevention and control in agriculture // ACS symposium series, American Chemical Society, Washington: DC, 2010. P. 1–16.
  17. Hocking A.D. Microbiological facts and fictions in grain storage // Proceedings of the Australian postharvest technical conference. Canberra: CSIRO, 2003. P. 55–58.
  18. Karlovsky P., Suman M., Berthiller F. Impact of food processing and detoxification treatments on mycotoxin contamination // Mycotoxin research. 2016. Vol. 32. №. 4. P. 179–205.
  19. Loy N.N., Sanzharova N.I., Gulina S.N. et al. Influence of electronic irradiation on the affection of barley by root rot // J. Phys.: Conf. Ser., 2019. V. 1393. 012107.
  20. Oghbaei M., Prakash J. Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review // Cogent Food & Agriculture. 2016. Vol. 2. №. 1. P. 1–14. https://doi.org/10.1080/23311932.2015.1136015
  21. Vorobyov M.S., Koval N.N., Sulakshin S.A. An electron source with a multiaperture plasma emitter and beam extraction into the atmosphere, Instrum. Exp. Tech., 2015. Vol. 58. No. 5. P. 687–695.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dynamics of root damage of spring barley by Bipolaris sorokiniana. 1 and 2 – irradiation modes (the same in Fig. 2–4).

下载 (312KB)
3. Fig. 2. Dynamics of the prevalence of Bipolaris sorokiniana on barley roots.

下载 (360KB)
4. Fig. 3. The degree of damage to barley leaves by Bipolaris sorokiniana in the tillering phase (* – differences are statistically significant, compared to the control at P < 0.5).

下载 (144KB)
5. Fig. 4. The degree of damage to barley leaves by Bipolaris sorokiniana in the heading phase.

下载 (76KB)

版权所有 © Russian Academy of Sciences, 2024

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可