FEATURES OF POSTGLACIAL ACTIVITY OF THE IMANDRA-KOLVITSKY FAULT (KOLA PENINSULA) ACCORDING TO GEOMORPHOLOGICAL AND GEOPHYSICAL DATA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article is devoted to the study of the postglacial tectonic activity of the Imandra-Kolvitsky fault in the south-west of the Kola Peninsula based on the synthesis of signs of seismogenic deformations in the relief, bedrock of the crystalline basement and loose sediments. The studied area is located in a through-tectonic depression, in the low-mountain Kandalaksha Tundra massif, occupied by the basin of Lake Sredne Luvengskoye. Previously, a focus of paleoearthquakes was established here due to the presence of seismic deformations of various types and ages. The tasks of the work included the creation of a combined detailed digital relief model in the lake bed and on the coastal territory; analysis of the structure of the relief and the distribution of tectonic deformations on the surface; analysis of the structure and hierarchy of segments of the Imandra-Kolvitsky fault and minor ruptures; analysis of the deep structure of the quaternary cover and its relationship with the relief of the basement with the identification of zones of faults and deformation anomalies. The main methods used were geological and geomorphological (morphogenetic, morphotectonic, morphodynamic, paleoseismic) and geophysical (ground penetration radar (GPR) and electrotomography (ET)). The spatial and deep structure of the segments of the Imandra-Kolvitsky fault in relation to deformations of sediments and the surface of the basement and the probable period of maximum activity of 14.9–10.3 thousand years have been determined.

About the authors

S. V Shvarev

Institute of Geography of the RAS; Schmidt Institute of Physics of the Earth of the RAS

Email: shvarev@igras.ru
Moscow, Russia; Moscow, Russia

A. L Gurinov

Institute of Geography of the RAS

Email: shvarev@igras.ru
Moscow, Russia

P. A Ryazantsev

Institute of Geology of the Karelian Scientific Center of the RAS

Email: shvarev@igras.ru
Petrozavodsk, Russia

N. N Lugovoy

Institute of Geography of the RAS; Lomonosov Moscow State University, Faculty of Geography

Email: shvarev@igras.ru
Moscow, Russia; Moscow, Russia

A. O Koroleva

Institute of Geography of the RAS; Schmidt Institute of Physics of the Earth of the RAS

Email: shvarev@igras.ru
Moscow, Russia; Moscow, Russia

I. V Bondar

Schmidt Institute of Physics of the Earth of the RAS

Author for correspondence.
Email: shvarev@igras.ru
Moscow, Russia

References

  1. Babak V.I. (Ed.). (1980) Karta geomorfologo-neotektonicheskogo raionirovaniya Nechernozemnoi zony RSFSR
  2. mashtaba 1:1500000 (Map of the geomorphologicalneotectonic zoning of the Non-Chernozem zone of the RSFSR in scale 1:1500000). Moscow: Mingeo RSFSR–MB i SSO SSSR — MGU (Publ.). 4 p (in Russ).
  3. Bachmanov D.M., Kozhurin A.I., Trifonov V.G. (2017)
  4. Database of active faults of Eurasia. Geodinamika i tektonofizika. Vol. 8. No. 4. P. 711–736 (in Russ). https://doi.org/10.5800/GT‑2017-8-4-0314
  5. Baluev A.S., Zhuravlev V.A., Terekhov E.N., Przhiyalgovskij E.S. (2012) Tektonika Belogo morya i prilegayushchikh territorii (Ob"yasnitel'naya zapiska k “Tektonicheskoi karte Belogo morya i prilegayushchikh territorii” masshtaba 1:1500000) (Tectonics of the White Sea and adjacent territories (Explanatory Note to the “Tectonic Map of the White Sea and Adjacent Territories”. Scale 1:1500000)). Moscow: GEOS (Publ.). 104 p (in Russ).
  6. Brichyova S.S., Deev E.V., Safronov O.V., Entin A.L. (2024) The structure of surface fractures of paleoearthquakes
  7. in the Kubadrinsky fault zone (Gorny Altai) according to georadiolocation data. Vestnik Sankt-Peterburgskogo
  8. universiteta. Nauki o Zemle. Vol. 69. No. 2. P. 303–320 (in Russ). https://doi.org/10.21638/spbu07.2024.205
  9. Ercoli M., Cirillo D., Pauselli C. et al. (2021) Groundpenetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, southern Apennines, Italy. Solid Earth. Vol. 12. Iss. 11. P. 2573–2596. https://doi.org/10.5194/se‑12-2573-2021
  10. Grachev A.F. (Ed.). (1997) Karta noveishei tektoniki Severnoi Evrazii. Masshtab: 1:5000000. (Map of the neotectonics of Northern Eurasia. Scale: 1:5000000). Moscow: VIMS MPR Rossii, OIFZ RAN (Publ.). 1 p (in Russ).
  11. Kolodyazhnyj S. Yu., Baluev A.S., Zykov D.S. (2019) Structure and evolution of Belomorian-Severodvinsk shear zone in the Late Proterozoic and Phanerozoic, East-European Platform. Geotektonika. No. 1. P. 62–86 (in Russ). https://doi.org/10.31857/s0016-853x2019162-86
  12. Koshechkin B.I. (1979) Golotsenovaya tektonika vostochnoi chasti Baltiiskogo shchita (Holocene tectonics of the eastern part of the Baltic Shield). Leningrad: Nauka (Publ.). 109 p (in Russ).
  13. Kratc K.O., Glebovickij V.A., Bylinskij R.V. et al. (1978) Zemnaya kora vostochnoi chasti Baltiiskogo shchita (The Earth's crust of the eastern part of the Baltic Shield). Leningrad: Nauka (Publ.). 231 p (in Russ).
  14. Malehmir A., Andersson M., Mehta S. et al. (2016) Postglacial reactivation of the Bollnas fault, central Sweden– a multidisciplinary geophysical investigation. Solid Earth.Vol. 7. Iss. 2. P. 509–527. https://doi.org/10.5194/se‑7-509-2016
  15. Markovaara-Koivisto M., Ojala A.E., Mattila J. et al. (2020) Geomorphological evidence of paleoseismicity: Surficial and underground structures of Pasmajarvi postglacial fault. Earth Surf. Processes Landforms. Vol. 45. Iss. 12. P. 3011–3024.
  16. https://doi.org/10.1002/esp.4948
  17. Mattila J., Ojala A.E.K., Ruskeeniemi T. et al. (2019) Evidence of multiple slip events on postglacial faults in northern Fennoscandia. Quat. Sci. Rev. Vol. 215. P. 242–252. https://doi.org/10.1016/j.quascirev.2019.05.022
  18. Nikolaeva S.B. (2001) Paleoseismic manifestations in the northeastern part of the Baltic Shield and their geological and tectonic position. Geomorfologiya. No. 4. P. 66–74 (in Russ).
  19. Nikolaev N.I., Babak V.I., Medyancev A.I. (1967) Issues of neotectonics of the Baltic Shield and the Norwegian Caledonides. Sovetskaya geologiya. No. 3. P. 3–23(in Russ).
  20. Nikolaeva S.B., Evzerov V. Ya. (2018) On the geodynamics of the Kola region in the Late Pleistocene and Holocene: a review and research results. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Geologiya. No. 1.P. 5–14 (in Russ).
  21. Nikolaeva S.B., Lavrova N.B. (2021) Paleoclimatic and natural-dynamic environmental changes in the Holocene in the south of the Murmansk region: results of studying bottom sediments of lakes in the Luvenga Tundra region. Trudy Fersmanovskoi nauchnoi sessii GI KNC RAN. No. 18. P. 310–315 (in Russ). https://doi.org/10.31241/FNS.2021.18.058
  22. Nikolaeva S.B., Lavrova N.B., Denisov D.B. (2017) A Catastrophic Holocene Event in the Lake Bottom Sediments of
  23. the Kola Region (Northeastern Fennoscandian Shield). Doklady Earth Sci. Vol. 473. No. 1. P. 308–312. https://doi.org/10.1134/S1028334X17030072
  24. Nikolaeva S.B., Tolstobrov D.S., Vashkov A.A. (2020) Paleoseismogeological research in the European Subarctic (Kola region): field expeditionary work 2018–2020. In: Rel'ef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii. Vol 7. P. 129–133 (in Russ). https://doi.org/.24411/2687-1092-2020-10719
  25. Ojala A.E.K., Mattila J., Middleton M. et al. (2020) Earthquake-induced deformation structures in glacial sediments evidence on fault reactivation and instability at the Vaalajarvi fault in northern Fennoscandia. J. of Seismology. Vol. 24. No. 3. P. 549–571.https://doi.org/10.1007/s10950-020-09915-6
  26. Ojala A.E.K., Mattila J., Ruskeeniemi T. et al. (2017) Postglacial seismic activity along the Isovaara–Riikonkumpu fault complex. Global and Planetary Change. Vol. 157. P. 59–72. https://doi.org/10.1016/j.gloplacha.2017.08.015
  27. Rodionov A.I., Nikolaeva S.B., Ryazancev P.A. (2018) Assessment of the possibilities of georadiolocation in the study of seismogenic disturbances and deformations in bottom sediments (on the example of Lake Uplokshskoye, northeast of the Fennoscandian Shield). Geodinamika i tektonofizika. Vol. 9. No. 4. P. 1–15 (in Russ).
  28. Ronning J.S., Ganerod G.V., Dalsegg E. et al. (2014) Resistivity mapping as a tool for identification and characterisation of weakness zones in crystalline bedrock: definition and testing of an interpretational model. Bull.Eng. Geol. Environ. Vol. 73. P. 1225–1244.https://doi.org/10.1007/s10064-013-0555-7
  29. Ryazancev P.A. (2015) Assessment of fracturing of the rock mass based on electrotomography models. Geofizika.No. 1. P. 41–50 (in Russ).
  30. Shevchenko N.V., Kuznecov D.E., Ermolov A.A. (2007) Seismotectonic manifestations in the relief of the shores of
  31. the White Sea. Vestnik Moskovskogo universiteta. Seriya 5.Geografiya. No. 4. P. 44–48 (in Russ). Shvarev S.V. (2003) Postglacial tectonic movements and the formation of the lake Imandra terraces (Kola Peninsula). Geomorfologiya. No. 4. P. 97–105 (in Russ).
  32. Shvarev S.V. (2022) Morphotectonics, seismicity, and exogenous processes of the Kola Peninsula. Russian Geology and Geophysics. Vol. 63. No. 8. P. 940–954. https://doi.org/1010.2113/rgg20204310
  33. Shvarev S.V., Bondar' I.V., Gurinov A.L. et al. (2023) Comprehensive geological, geomorphological, tectonophysical, and geophysical studies on Lake Srednee Luvengskoye (southwest of the Kola Peninsula). In: Rel'ef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii. Materialy ezhegodnoi konferentsii po rezul'tatam ekspeditsionnykh issledovanii. Vol. 10. Iss. 10. Sankt-Peterburg: VNIIOkeangeologiya (Publ.). P. 292–298 (in Russ).
  34. Shvarev S.V., Bondar' I.V., Gurinov A.L. et al. (2024a) Comprehensive studies of tectonic deformations in the Imandra-Kolvitsky activated fault zone (Kola Peninsula). Trudy Fersmanovskoi nauchnoi sessii GI KNC RAN. No. 21.P. 259–268 in Russ).
  35. Shvarev S.V., Nikolaeva S.B., Bondar' I.V. et al. (2024б) Morphotectonics of the Imandra-Kolvitsky Fault and parameters of the focal zone of paleoearthquakes in the Luvenga Tundra (Kola Peninsula). Voprosy inzhenernoi seismologii. Vol. 51. No. 2. P. 74–101 (in Russ).https://doi.org/10.21455/ VIS2024.2-5
  36. Shvarev S.V., Nikolaeva S.B., Koroleva A.O. (2021) Morphological manifestations of postglacial seismic activity of the Imandra-Kolvitsky active fault in the Luvenga focal zone (Murmansk region). Trudy Fersmanovskoi nauchnoi sessii GI KNC RAN. No. 18. P. 425–429 (in Russ).
  37. Starovojtov A.V. (2023) Interpretatsiya georadiolokatsionnykh dannykh: uchebnoe posobie po kursu “Georadiolokatsiya” (Interpretation of georadiolocation data: a textbook for the course “Georadiolocation”). Moscow: KDU; Dobrosvet (Publ.). 258 p (in Russ).
  38. Strelkov S.A (1973) Morphostructures of the northeastern part of the Baltic Shield and the main patterns of their formation. In: Paleogeografiya i morfostruktury Kol'skogo poluostrova. Leningrad: Nauka (Publ.). P. 5–80 (in Russ).
  39. Strelkov S.A., Evzerov V. Ya., Koshechkin B.I. et al. (1976) Istoriya formirovaniya rel'efa i rykhlykh otlozhenii severovostochnoi chasti Baltiiskogo shchita (The history of the formation of relief and loose sediments of the northeastern
  40. part of the Baltic Shield). Leningrad: Nauka (Publ.). 164 p (in Russ).
  41. Trifonov V.G. (Ed.). (1987) Karta aktivnykh razlomov SSSR i sopredel'nykh territorii. Mashtab 1:8000000 (Map of
  42. active faults of the USSR and adjacent territories. Scale 1:8000000). Moscow: GIN (Publ.). 48 p (in Russ).
  43. Zarrina E.P. (Ed.). (2003) Gosudarstvennaya geologicheskaya karta RF (nov. seriya). Karta chetvertichnykh obrazovanii.
  44. List Q-(35)-37 (Kirovsk). Masshtab 1:1000000 (The State Geological Map of the Russian Federation (new series). Map of quaternary formations. Sheet Q-(35)-37 (Kirovsk)). Sankt-Peterburg: Kartograficheskaya fabrika VSEGEI (Publ.). 1 p (in Russ).
  45. Zelenin E., Bachmanov D., Garipova S. et al. (2022) The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset. Earth System Sci. Data. Vol. 14. Iss. 10. P. 4489–4503. https://doi.org/10.5194/essd‑14-4489-2022

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences