Вестник НБГУ. № 2/2016
И. Ю. Усманов, Э. Р. Юмазулова, В. Б. Иванов и др.

of plants, their growth and development. It was established that of the first power of plants tirotomoz lesion reduction of growth is more than 30 %, the second and third degrees — growth is completely absent. To reduce the infection load and improving the phytosanitary condition of the plants in urban plantings must be timely to conduct forestry activities against necrotic-cancerous diseases, with the introduction of ornamental shrubs and formation of artificial planting of plants to take into account the degree of resistance to infectious diseases.

Key words: necrotic-cancerous diseases; the causative agent; phytopathogenic fungi; the degree of the spread of disease; the harmfulness; control measures.

About the authors: MAKAROVA Tatiana Anatolyevna1, candidate of biology, associate Professor of botany and ecology of plants; Makarova Petr Nikolaevich2, candidate of biological Sciences, associate Professor, Department of botany and plant ecology of Institute of natural and technical Sciences Surgut state University.

Place of employment: Surgut State University.

АДАПТАЦИЯ ЭКОСИСТЕМ СРЕДНЕГО ПРИОБЬЯ
В ЗОНЕ НЕФТЕДОБЫЧИ: ИЕРАРХИЯ И ДЛИТЕЛЬНОСТЬ ПРОЦЕССОВ

Аннотация. Выявлена, что адаптации экосистем развиваются на разных уровнях организации: от аутоколо-
гического до ландшафтного. Общий процесс адаптаций экосистем характеризуется следующим.

Биологически позитивные изменения развиваются параллельно на разных уровнях организации экосистем,
принципами эти процессы часто протекают относительно независимо.

Восстановительные процессы на разных уровнях формируются в различных временных масштабах: от быст-
рых процессов (время развития — несколько дней) до процессов с характерным временем в несколько десятиле-
тов.

Быстрые реакции водорослей реализуются по нескольким сценариюм: 1) размножение эвгленовых
(Euglenophyta) с высоким уровнем биоразнообразия в лентических водоемах; 2) цветение сине-зеленых
(Cyanophyta — Cyanobacteria) с доминированием Anabaena circinalis Ruben et Flah.; 3) вариант быстрой реакции —
развитие видов рода Spirigera, часто с доминированием Ulotrix variabilis Katz. Характерное время — в течение
сезона активной вегетации.

На фоне олиготрофности экосистеме слабое и умеренное загрязнение антропогенными полотантов вызывает
активизацию процессов накопления (ростовые процессы) и деструкции биомассы (активизация грибов-
деструкторов и почвенных ферментов-целлюлаз). Такой уровень загрязнения характерен для большого числа
антропогенных источников.

Микрофлуктуационное перемещение полотантов (десятки и сотни метров) приводит к выравниванию их
концентрации и разбавлению до биологически безопасного уровня в течение 1—3 месяцев (теплый сезон).

Восстановление растительных сообществ. Сукцессионное время, как правило, — несколько лет.

Восстановление высших растений на уровне функциональной организации и ростовых процессов. Характер-
ное время — в течение 1—3 сезонов вегетации. Восстановление элементов почв. Самый медленный процесс с
характерным временем в 104—105 лет.

Доля видов растений, применяемых при рекультивации по рекультивации на всех площадках, невелика как по
показателем продуктивности (участь в биопродуктивности ценозов), так и в проектном покрытии. Не зафик-
сировано случаи, когда растительные сообщества становились доминантами восстанавливающихся сообществ, более того, в составе восстанавливавшихся сообществ эти виды не сохраняются.

Антропогенные воздействия всегда накладываются на природные векторные и циклические процессы. В ре-
зультате формируется сложная картина интерференции, которая имеет выраженные черты фрактальных систем.
В силу этого могут реализовываться многочисленные альтернативные самоподобные сценарии восстановления
экосистем.

Во всех исследованных случаях самовосстановление экосистем определяется поведением аборигенных видов
водорослей, грибов, травянистых и древесных высших растений.

Ключевые слова: адаптация экосистем; нефтедобыча; рекультивация; восстановительные процессы; дина-
мика растительности.

Сведения об авторах: Усманов Исхаидер Юсфович1, доктор биологических наук, профессор кафедры эко-
логии; Юмазулова Эльвира Рамилевна2, кандидат биологических наук, доцент кафедры экологии; Иванов Вячес-
лав Борисович3, кандидат педагогических наук, доцент кафедры экологии; Коркина Елена Александровна1, кан-
didat географических наук, доцент кафедры географии; Шербаков Аркадий Владимирович3, кандидат биологи-
ческих наук, доцент кафедры биохимии и биотехнологии; Иванов Никита Александрович2, аспирант кафедры
экологии Нижневартовского государственного университета; Рябуха Анатолий Васильевич1, аспирант кафедры
экологии Нижневартовского государственного университета.

Место работы: 1, 2, 3, 4 Нижневартовский государственный университет, 5 Башкирский государственный уни-
верситет.
Контактная информация: 1-4 628609, г. Нижневартовск, ул. Дзержинского, д. 11, каб. 317, тел. 3466436586, e-mail: iskander.usmanov@mail.ru; тел. 89129366116, e-mail: elvirau2009@yandex.ru; 628609, г. Нижневартовск, ул. Дзержинского, д. 11, каб. 314, тел. 3466436586, e-mail: karatagzh@yandex.ru; 628609, г. Нижневартовск, ул. Дзержинского, д. 11, каб. 309, тел. 3466456023, e-mail: lenakn@gmail.com; 450076, г. Уфа, ул. Заки Валиди, д. 32, тел. 3472646259, e-mail: Humanist314@rambler.ru; 628605, г. Нижневартовск, ул. Ленина, д. 56, тел. 89222559041, e-mail: nikitavim@gmail.com; 628605, г. Нижневартовск, ул. Ленина, д. 56, тел. 89821577189, e-mail: toxa-jj@mail.ru.

В настоящее время сложились противоречивые представления о характере и темпах адаптации северных экосистем к антропогенным воздействиям. Так, имеется неопределенность в описании длительности процессов адаптации экосистем. С одной стороны, есть сведения о быстром восстановлении растительного покрова после разливов нефти и солевых композиций, используемых в нефтедобыче (Лапшина 2010; Юмагулова 2007). С другой — низкий уровень всех параметров среды, обеспечивающих рост и развитие растений — это свят, тепло, элементы корневого питания — определяет низкую скорость наполнения биомассы и смены растительности в ходе сукцессии (Коркина 2009; Овечкина 2015).

Во многом эта неопределенность может возникнуть, если учитывать, что разные элементы экосистемы, в том числе и в Среднем Приобье, обладают разным характерным временем перехода к адаптации к изменяющимся условиям среды.

Адаптации экосистем Среднего Приобья к антропогенным воздействиям нефтедобычающего комплекса в свете трех вышеперечисленных факторов: различия характерных времен адаптации элементов экосистем; существование достаточно узкого «коридора возможностей» реализации адаптации; поливарийантность адаптивных решений как следствие стохастических процессов в экосистемах до настоящего времени не рассматривались.

95—98% нарушений природной среды в ходе нефтедобычи могут быть отнесены к средним и слабым (Лапшина, Блойтен 1999). Катастрофические масштабные нарушения в результате крупных аварий — явление достаточно редкое (Хаустов, Редина 2006).
Адаптации элементов экосистем Среднего Приобья. Выявлено, что адаптации экосистем развиваются на разных уровнях организации: от аутэкологического до ландшафтного. Общий процесс адаптаций экосистем характеризуется следующим:

1. Биологически позитивные изменения развиваются параллельно на разных уровнях организации экосистем, причем эти процессы часто протекают относительно независимо.

2. Восстановительные процессы на разных уровнях формируются в различных временных масштабах: от быстрых процессов (время развития — несколько дней) до процессов с характерным временем в несколько десятилетий.

Рассмотрим эти процессы, начиная с самых быстрых.

Перераспределение и флуктуации нефтепродуктов и неорганических веществ. Как показали замеры концентрации веществ, оказавшихся в зоне загрязнения, происходит постоянное перемещение этих веществ. При этом отдельные загрязнители перераспределяются независимо один от другого. Еще один интересный эффект — концентрация тех или иных веществ может возрастать и без дополнительных загрязнений. На рис. 1 а, б видно, что низкая концентрация, зарегистрированная после разлива (июнь), может повышаться без дополнительных антропогенных воздействий (сентябрь). Очевидно, что в этом случае мы наблюдаем стохастические перемещения биологовых вод и растворенных в них веществ под влиянием многочисленных разнонаправленных сил, не связанных прямо с предыдущим антропогенным загрязнением: это течения, микроциркуляция, потоки, вызванные транспортировкой, изменениями термодинамических характеристик. В целом микрофлуктуационное перемещение растворенных веществ на десятки и сотни метров приводит к выравниванию их концентрации и разбавлению до биологически безопасного уровня в течение 1—3 месяцев теплого сезона (Усманов и др. 2015 а, б).

Рис. 1. Концентрация хрома, никеля, меди и свинца в пробах почв исследуемых участков, июль 2015 г. (а), сентябрь 2015 г. (б)
Развитие водорослей на нефтяных разливах. Практически сразу после разлива начинают развиваться нефтезаглаивающие биосистемы, которые, в свою очередь, стимулируют рост водорослей (рис. 2). Быстрые реакции водорослей реализуются по нескольким сценариям: 1) размножение эвгленовых (Euglenophyta с высоким уровнем биоразнообразия в ленточных водоемах; 2) цветение синезеленых (Cyanophyta – Cyanobacteria) с доминированием Anabaena circinalis Rabenh. et Phal.; 3) вариант быстрой реакции — развитие видов рода Spirogyra часто с доминированием Ulotrix variabilis Kutz. Характерное время процесса — в течение сезона активной вегетации.

Рис. 2. Развитие водорослей в первый сезон после разлива нефти

Накопление биомассы высших растений. В условиях дефицита элементов минерального питания любые вещества, которые могут быть использованы растениями для наращивания биомассы или формирования энерго- и материалоемких адаптаций, интенсивно включаются в метаболизм (Усманов 1986; Усманов, Мартынова 1988; Рахмакулова и др. 2001 а, б). Органические соединения и усвоемые минеральные соли при попадании в олиготрофную экосистему становятся дополнительными ресурсами, которые разными путями включаются в биологический круговорот. Эти ресурсы включаются в обмен веществ напрямую, путем их поглощения и метаболизации, либо опосредованно, активизируя и/или ингибируя параллельные цепочки преобразования ресурсов.

В условиях верхних болот в рамках однородных ценозов нами выявлены градиенты изменения концентрации элементов минерального питания, в первую очередь азота и фосфора (Усманов, Юмагулова и др. 2015 а, б; Usmannov and other 2016). На общем низком фоне содержание этих элементов менялось в 1,3—1,4 раза от 10 до 14 мг/кг (рис. 3).

Итак, в зоне антропогенного воздействия происходит восстановление функциональной организации и активизация ростовых процессов высших растений. Характерное время — в течение 1—3 сезонов вегетации.

Рис. 3. Содержание азота и фосфора в почве верховых болот (пробы из участков приложены к градиенту вариации трофности N+P)

Для всех видов зарегистрировано накопление биомассы, однако этот процесс реализовывался разными путями (рис. 4, 5). У O. palustris и A.polifolia увеличение биопродуктивности проходило преимущественно за счет увеличения числа побегов на единицу площади, у Ch.calculata увеличивалась масса и число отдельных листьев и побегов. Другая тенденция — ослабление признаков ксероморфности за счет снижения толщины листа и параллельного увеличения площади, что в целом вело к снижению биомассы отдельного листа (рис. 4, 5).

Деструкция фитомассы верховых болот Среднего Приобья. Важными процессами, определяющими разложение растительных остатков, являются сапротрофы, в первую очередь, грибы, а также целлюлазы и протеазы микроорганизмов и/или иммобилизованные ферменты.

В условиях урбанизированной среды степень микоризации сосудистых растений верховых болот высокая, она превышает контроль на 60% — мирб болотный, 42% — пущиця влагалищная и 27% — подбель многолистный.

Изучение степени микоризообразования показало, что данный параметр варьировал от 0,3 до 3,3 балла. Наибольшая степень образования микоризы на территории природной среды у березы карликовой — 2,8 балла; фажелского хозяйства березы карликовой — 1,6 балла; в условиях города Нижневартовска береза карликовая — 3,3 балла; УПБ «Церковная грява» подбель многолистный — 2,3 балла. Наименьшая степень образования микоризы в условиях природной среды сосны обыкновенной — 0,5 балла; фажелского хозяйства сосны обыкновенной — 0,5 балла; города Нижневартовска подбель многолистный — 0,8 балла; УПБ «Церковная грява» пущица влагалищная — 0,3 балла. Все остальные виды занимают промежуточное значение. В условиях антропогенной нагрузки степень образования микоризы на корнях сосудистых растений верховых болот возрастает, что, вероятно, связано с тем, что микобионты обеспечивают растения элементами.
Прир. растений и в градиенте трофности

На фоне олиготрофности экосистем слабое и умеренное загрязнение антропогенными поллютанами вызывает активизацию процессов накопления (ростовые процессы) и деструкции биомассы через активизацию грибов-деструкторов и почвенные ферменты-целлюлаз.

проективном покрытии. Не зафиксировано случаев, когда рекультиванты становились доминантами восстанавливающихся сообществ, более того, в составе восстановившихся сообществ эти виды не сохраняются.

Первичные и антропогенные сукцессии на искусственных элементах ландшафтов. Болотные экосистемы в Средненебской низменности перетрепывают серьезные изменения, связанные с развитием инфраструктуры и сети инженерных сооружений. На территории вдоль дорог и на промышленных площадках наблюдаются признаки постоянного нарушения растительного покрова: неровной речной и озера резко, обильные и количество видов растений сильно различается (Коркина 2005, 2009; Овечкина 2015).

Луговые ценозы имеют небольшие размеры по площади. Мозаичность природных сообществ расположения просматривается по всей территории месторождения. На участках, где произошла курение, вспышке, наблюдается смещение аборигенных и занесенных видов, сорных.

Сооружение инфраструктуры нефтегазообъе-мающего комплекса на поверхности болот требу-ет больших перемещений масс субстратов. В ре-зультате возникают искусственные структуры, имеющие положительные формы в рельефе — наносы в виде площадок, валы в виде линеек объектов, т.е. формируются техногенные поверхностные образования (ТПО). Эти образования оказывают два основных вида воздействия на окружающую среду: во-первых, возникновение новых механических барьёров приводит к смещениям экосистем, в связи с нарушением гидрологических функций; во-вторых, новые поверхностные образования являются основой для развития восстановительной сукцессии на нарушенных участ-ках и активизации биогенно-аккумулятивного процесса. Восстановление элементов почвы — это медленный процесс в экосистемах с характерным временем в 10^4—10^5 лет.

Таким образом, на фоне олиготрофности экосистем слабое и умеренное загрязнение антропогенными поллютантами вызывает активизацию процессов накопления (ростовые процессы) и деструкции биомассы (активизация грибов-деструкторов и почвенных ферментов-цеплюлоз). Микрофитотравное перемещение поллютантов (деструкции, и сотни метров) приводит к выравниванию их концентрации и разбавлению до био- логически безопасного уровня в течение 1—3 месяцев (темпел сезон).

Антропогенные воздействия всегда накладываются на природные векторные и циклические процессы. В результате формируется сложная картина интерференции, которая имеет выраженные черты фрактальных систем. В силу этого много- гут реализовываться многочисленные альтерна-тивные самоподобные сценарии восстановления экосистем.

Во всех исследованных случаях самовосста-новление экосистем определяется поведением абогенных видов водорослей, грибов, травяни- стых и древесных высших растений.

ЛИТЕРАТУРА

Иванова Н. А., Юмалова Э. Э. 2009. Эколого-физиологические механизмы адаптации и типы стратегии сосудистых растений верховых болот: Монография. Нижневартовск: Изд-во НГУ.

Лапшина Е. Д., Бобров И. В. 1999. Типы нарушенности и естественное восстановление растительности олиготрофных болот на нефтяных месторождениях Томской области. Кулеба (1), 129—140.

Мирзаев Б. М., Насимова Л. Г. 2012. Современное состояние основных концепций науки о растительности. Уфа: Гилиев.

Москина И. Л., Овечкин Е. С., Овечкин Ф. Ю. 2006. Изменение некоторых морфологических параметров сосны обыкновенной в зоне влияния факелов сжигания попутного нефтяного газа в Среднем Приобье // Проблемы региональной экологии 3, 17—23.

Рахманкулова Э. Ф., Рахманкулов Г. А., Мустафина А. Р., Усманов И. Ю. 2001. Оценка дыхательных затрат на адаптацию у растений с различной устойчивостью к дефициту и избыточку элементов минерального питания // Фитологическая растений 48 (5), 753.

Рахманкулова Э. Ф., Рахманкулов Г. А., Усманов И. Ю. 2001. Рост и ландшафт растений разных адаптивных групп при дефиците эле-ментов минерального питания // Фитологические растений 48 (1), 75.

Розенберг Г. С. 2013. Введение в теоретическую экологию. В 2 т. Тольятти: Каспариа.

Усманов И. Ю. 1986. Экология и физиологические характеристики некоторых видов растений с различными стратегиями их сообществ, подвергшихся антропогенному воздействию // Биологические науки 274 (10), 66.
Усманов И. Ю., Южасова Е. Р., Овечкина Е. С., Иванов В. Б., Щербаков А. В., Александрова В. В., Иванов Н. А. 2015. Адаптация программы переселения внетипных кустарников и антропогенных угодий на озотрофных болотах Западной Сибири. Охотничий полиэстрис Пов. // Международный научно-исследовательский журнал 10-3 (41), 113—117.

Усманов И. Ю., Овечкина Е. С., Шахетова Р. И. 2015. Распространение влияния нефтяного шлама // Вестник Нижневартовского гос. ун-та 3, 84—94.

Усманов И. Ю., Южасова Е. Р., Южасова Е. Р., Иванов В. Б., Щербаков А. В., Шахетова Р. И. 2015. Проблемы самовосстановления экосистем Среднего Приобья при антропогенных воздействиях нефтехозобывающего комплекса // Вестник Нижневартовского гос. ун-та 1, 79—86.

Усманов И. Ю., Семенова Н. Н., Щербаков А. В., Суондуков Я. Т., Усманов Ю. И. 2014. Эдемические экологические ниши Южного (Башкирского) Зауралья: многомерность и функцирующие режимы // Вестник БГАУ 1, 16—22.

Усманов И. Ю., Южасова Е. Р., Щербаков А. В., Цымбалюк А. И. 2015. Переключение программ адаптации внетипных кустарников Среднего Приобья в градиент трофосфф // Проблемы популяционной экологии: VI Любительские чтения. Тольятти: Каспир, 316—320.

Хамутов А. П., Редина М. М. 2006. Охрана природы при добыче нефти. Москва: Дело.

Южасова Е. Р. Экологофизиологические механизмы адаптации и типы стратегий растений верховых болот: Автореф. дис. … канд. биол. наук. Уфа.

REFERENCES

ADAPTATION OF ECOSYSTEMS IN THE MIDDLE OB REGION EXPOSED TO OIL PRODUCTION IMPACT: HIERARCHY AND DURATION OF ADAPTATION PROCESSES

Abstract. The paper presents a study of adaptation processes of ecosystems in the Middle Ob Region exposed to oil production impact. The study revealed that the ecosystems are developing on different levels, from the autecological to the landscape levels.

Biologically positive changes are developing more or less independently and parallel to each other at different levels of ecosystems. The restorative processes are formed within different time scales: from fast processes (within a few days) to longer ones (within several decades).

Algae’s rapid responses occur under the following scenarios: 1) reproduction of euglenophytes (Euglenophyta) with a high level of biodiversity in Lentic reservoirs; 2) flourishing of cyanobacteria (Cyanophyta - Cyanobacteria) with the dominance of Anabaena cirensalis Rabenh et Flah.; 3) various rapid responses – development of Spirogyra, often with the dominance of Ulotrix variabilis Katz. Responses occur during the active growing season.

Following the oligotrophicy of ecosystems, weak and moderate anthropogenic pollution activates accumulation processes (growth process) and biomass degradation (activation of fungi decomposers and soil enzyme cellulase). This level of contamination is typical for a large number of anthropogenic pollution sites.

Microfluxion movement of pollutants (tens to hundreds of meters) tends to equalize their concentration and dilution to the biologically safe level within 1—3 months (during the warm season).

As for restoration of plant communities, the successional time is usually several years.

The period for restoration of higher plants at the level of functional organization and growth processes amounts to 1—3 vegetation seasons. Soil elements restoration is the slowest process with a time period of 10^3—10^6 years.

The proportion of plant species used in the rev egetation activities at all sites is rather limited both in terms of productivity indicators (involvement in bioefficiency cenoses) and the projective cover. The researchers have recorded no cases of plants used for rev egetation to be dominant in the recultivated plant communities. Moreover, such plant species do not become a part of such communities after rev egetation.

Anthropogenic impacts are always reimposed over the natural vector and cyclic processes, resulting in a complex interference pattern with the features of fractal systems, hence numerous alternative self-similar scenarios of ecosystem recovery taking place.

All the studies of ecosystem recovery were based on the behavior of native species of algae, fungi, higher herbaceous and woody plants.

Key words: adaptation of ecosystems; oil production; recultivation plants; recovery processes; vegetation dynamics.

About the authors: Iskander Yusufovich Usmanov, Doctor of Biological Sciences, Professor at the Department of Ecology; Elvira Ramilevna Yumagulova, Candidate of Biological Sciences, Associate Professor at the Department of Ecology; Vyacheslav Borisovich Ivanov, Candidate of Biological Sciences, Associate Professor at the Department of Ecology; Elena Aleksandrovna Korkina, Candidate of Geographical Sciences, Associate Professor at the Department of Geography; Arkady Vladimirovich Shcherbakov, Candidate of Biological Sciences, Associate Professor at the Department of Biochemistry and Biotechnology; Nikita Aleksandrovich Ivanov, Graduate Student at the Department of Ecology; Anatoly Vasilevich Ryabukha, Graduate Student at the Department of Ecology.

Place of employment: 1, 2, 3, 4 Nizhnevartovsk State University; 5 Dashkirk State University.