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ГИДРОХИМИЧЕСКИЙ АНАЛИЗ И КОРРЕЛЯЦИОННЫЕ ВЗАИМОСВЯЗИ 
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Abstract. The oil field produced water from 

the Upper Assam Basin, generated during oil 

and gas exploration and production, contains 

high levels of contaminants, including 

inorganic elements and anions, which pose 

significant environment and health risks. To 

address these challenges, we employed the 

Piper class scatter plot and correlation 

analysis methods to develop new correlations 

and gain a deeper understanding of the 

complex relationships among these 

contaminants. Our analysis revealed elevated 

concentrations of Na, Li, Sr, Pb and F 

exceeding the permissible limits set by India’s 

Central Pollution Control Board, highlighting 

their potential environmental and health 

impacts. In contrast, Cr, Cu, Mo and Ni were 

absent, reflecting varying geochemical 

influences. The study also examined the roles 

of Ca and Mg in water hardness and scaling, 

as well as the severe environmental risks 

associated with high levels of Zn and Pb. 

Notably, the Piper class scatter plot analysis 

identified calcium bicarbonate Ca(HCO3)2 as 

the predominant component, providing a 

clearer view of the water’s chemical 

composition. Correlation analysis, supported 

by empirical data, indicated that Na is 

positively correlated with other inorganic 

parameters, with a proportionality constant of 

2.1 e-5. These findings underscore the need for 

advanced treatment methods to mitigate 

excessive contaminants and enhance 

sustainable management practices. The study 

highlights the importance of employing 

sophisticated analytical techniques to improve 

environmental stewardship and operational 

efficiency in the oil and gas industry. 

Keywords: contaminants; correlation; 

environment; proportionality constant; 

relationships. 

Аннотация. Попутно добываемая вода (ПДВ) из 

месторождений Верхнеассамского бассейна, 

образующаяся в процессе разведки и добычи нефти и 

газа, характеризуется высоким уровнем загрязняющих 

веществ, включая неорганические элементы и анионы, 

что создает значительные экологические и 

медицинские риски. Для решения этих задач в данном 

исследовании были использованы методы диаграммы 

рассеяния Пайпера и корреляционного анализа с целью 

разработки новых корреляционных зависимостей и 

получения более глубокого понимания сложных 

взаимосвязей между указанными загрязнителями. 

Проведенный анализ выявил повышенные 

концентрации Na, Li, Sr, Pb и F, превышающие 

допустимые пределы, установленные Центральным 

советом по контролю за загрязнением Индии (CPCB), 

что подчеркивает их потенциальное негативное 

воздействие на окружающую среду и здоровье 

человека. В противоположность этому, элементы Cr, 

Cu, Mo и Ni обнаружены не были, что отражает 

варьирующее геохимическое влияние. В работе также 

исследованы роль Ca и Mg в формировании жесткости 

воды и образовании отложений (скейлинга), а также 

серьезные экологические риски, связанные с высокими 

уровнями Zn и Pb. Примечательно, что анализ с 

использованием диаграммы Пайпера позволил 

идентифицировать бикарбонат кальция (Ca(HCO₃)₂) в 

качестве преобладающего компонента, что 

обеспечивает более четкое представление о 

химическом составе воды. Корреляционный анализ, 

подтвержденный эмпирическими данными, указал на 

наличие положительной корреляции между Na и 

другими неорганическими параметрами с 

коэффициентом пропорциональности, равным 2,1 e-5. 

Полученные результаты подчеркивают необходимость 

применения advanced методов очистки для снижения 

чрезмерной концентрации загрязняющих веществ и 

повышения эффективности практик устойчивого 

природопользования. Проведенное исследование 

демонстрирует важность использования sophisticated 

аналитических методик для совершенствования 
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Introduction 

Oil-field produced water (OFPW) constitutes the predominant volume of fluid generated 

during oil and gas exploration and production (E&P) operations, representing both a critical 

environmental challenge and a significant operational management concern [11; 17; 36; 54]. This 

study focuses on the Upper Assam Basin (UAB), in northeastern India, located approximately 

between 26° 54′ N–26° 58′ N latitude and 94° 35′ E–94° 58′ E longitude, one of India’s major on-

shore petroleum provinces. The UAB features a complex geological structure with productive 

horizons spanning the Paleocene through Miocene strata, including formations such as the Barail 

Main Sand (BMS), Barail Coal Shale (BCS) and Tipam Sand (TS-IV) [5; 34; 55]. These 

formations overlie basement rocks and are interbedded with sandstones, siltstones and mudstones, 

creating multiple productive pay zones with varying pressure and temperature regimes. In the 

studied Rudrasagar oil field, depths of 3000–3300 m, pressure gradients of 2800–4000 psi and 

temperature gradients of 80–110 °C are reported. With production from these mature fields having 

reached its peak, the volume of OFPW is rising markedly. The basin’s geological complexity, 

together with water-to-oil ratios exceeding 90% in certain Barail horizon wells, contributes to the 

generation of large quantities of OFPW [14; 16; 20; 45]. 

https://orcid.org/0000-0002-6401-5485
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The contamination observed in these waters originates from both natural geochemical 

processes, including mineral dissolution from carbonate and silicate lithologies, ion exchange 

reactions, and subsurface brine concentration, and operational sources such as corrosion of 

infrastructure, chemical additives used in drilling and well-treatment, and mixing with formation 

(connate) waters [3; 18; 31; 38]. Understanding the specific geochemical fingerprint of UAB 

OFPW is essential for developing basin-specific treatment and management strategies that satisfy 

regulatory compliance under India’s Central Pollution Control Board (CPCB) standards, as well 

as for promoting sustainable environmental stewardship. 

The American petroleum institute (API) estimated that approximately 18 billion barrels of 

OFPW were generated by the US onshore operations in 1995 [3; 26; 52]. Khatib Z. and Verbeek 

P. [38], indicated that the global estimates suggested an average of 77 billion barrels annually. It 

is estimated that onshore oil and gas wells in the United States generated approximately 21, 18, 

and 14 billion barrels of OFPW annually in the years 1985, 1995, and 2001, respectively [8; 25; 

49]. Recent data from major oil industries of UAB further illustrate this trend, with substantial 

volumes reported in their sustainability reports [1; 10; 16; 55; 56]. 

The chemical composition of untreated OFPW is complex and influenced by factors such as 

geographical location, geological formation, reservoir life, and hydrocarbon type [5; 15; 22]. This 

complexity includes a range of inorganic elements and anions (IEA), such as sodium (Na), calcium 

(Ca), magnesium (Mg), arsenic (As), fluoride (F), chloride (Cl−), sulfate (SO4
2−), bicarbonate 

(HCO3
−), and others. Understanding these constituents is essential for developing effective 

treatment strategies and managing environmental impacts [2; 9; 20; 23; 53]. 

High concentrations of both soluble and insoluble salts in OFPW can cause scaling and 

corrosion in pipes, as well as equipment fouling, leading to increased maintenance costs and 

potential equipment failure. Moreover, heavy metals present in OFPW are highly toxic to aquatic 

life, even at low concentrations. These metals do not readily break down and can persist in the 

environment for extended periods. They can also co-precipitate with other substances, 

complicating their separation and removal during treatment [4; 14; 19; 43]. Additionally, the Piper 

class scatter plot serves as a powerful tool for visualizing the ionic composition of OFPW. By 

plotting elements and anions on a Piper diagram, researchers can categorize water types, reveal 

patterns, and develop new correlations that enhance our understanding of water chemistry. This 

plot offers valuable insights into the interrelationship between different ionic constituents and 

assist to identify distinctive chemical signatures associated with various oil fields [15; 21; 29; 34]. 

This study aims to conduct a comprehensive analysis of the IEA present in untreated OFPW, 

utilizing advanced analytical techniques and Piper class scatter plots. Our objective is to develop 

new correlations and gain deeper insights into the chemical behaviour of OFPW. These insights 

will support the development of more effective treatment processes and sustainable environmental 

management strategies. In the subsequent sections, we will outline the methodology used for 

sample collection and analysis, present our findings, and discuss their implications. Through this 

research, we seek to enhance our understanding of OFPW chemistry and contribute to improved 

management practices in the oil and gas industry. 
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Geological setting and origin of contaminants in upper Assam basin produced water 

The UAB is an intracontinental rift basin characterised by a complex stratigraphic succession 

that records multiple phases of marine transgression and regression. The productive intervals 

contain highly saline formation waters (paleowaters) that have undergone prolonged diagenesis 

and extensive ion-exchange processes [20; 38; 49]. The elevated concentrations of dissolved 

inorganic elements and anions observed in the present study are consistent with a combination of 

geochemical and operational processes: 

(a) Natural dissolution processes: Interaction of subsurface waters with carbonate 

lithologies (limestone and dolomite) and evaporitic minerals leads to enrichment in Na⁺, Ca²⁺ and 

HCO3
−. The identification of Ca(HCO₃)₂ facies through Piper diagram interpretation supports a 

carbonate-dominated geochemical signature in these reservoirs [51; 56]. 

(b) Ion-exchange and mineral weathering: Clay water reactions and weathering of silicate 

minerals such as feldspar and mica contribute K, Sr and trace elements to the aqueous phase. The 

presence of Sr and Li is consistent with progressive mineral alteration and long residence times of 

formation waters in the subsurface [27; 46].  

(c) Anthropogenic contributions: Corrosion of steel well casings, tubing and surface 

equipment can introduce Fe, Pb and Zn, while chemical treatment fluids used during drilling, 

stimulation and well maintenance may contribute F and other anions [19; 35; 53]. 

(d) Redox controlled species: The detection of low but measurable concentrations of As and 

Mn indicates reducing subsurface conditions in which these species occur predominantly as As³⁺ 

(arsenite) and Mn²⁺. The absence or near-absence of oxidised species such as chromate and 

molybdate further corroborates the reducing redox environment typical of petroleum reservoirs [8; 

24; 49]. 

Materials and Methods 

Sampling of OFPW. Five crude oil (CO) samples were collected from five distinct 

wellheads (S1, S2, S3, S4, S5) within the Rudrasagar oil field having depth, pressure gradient and 

temperature gradient of 3000–3300 m, 2800–4000 psi and 80–110 oC respectively. Additionally, 

five OFPW samples (S6, S7, S8, S9, S10) were obtained from the central dehydration system 

(CDS) at Digboi. Sampling was conducted monthly over a six-month period. Both CO and OFPW 

samples were collected using one litre polyethylene bottles that had been pre-cleaned with 

deionized water. For each wellhead sample, CO was pumped directly in the bottle at a controlled 

flow rate to ensure representative sampling. After collection, the samples were promptly 

transported to the laboratory within 24 hours for gravity separation. The OFPW samples were then 

thoroughly mixed with diethyl ether ((C2H5)2O) in a separating funnel. This process resulted in a 

distinct separation into two layers, with the lower layer being collected for the determination of 

IEA [18; 39]. 

Subsequent analytical studies included the use of flame photometer (FP), atomic absorption 

spectrophotometer (AAS), inductively coupled plasma optical emission spectrophotometer (ICP-

OES), and a multi parameter kit (MPK) to analyse various elements. Anion analysis was performed 

using titration methods (ASTM D 4458 – 15, ASTM D 3875 – 15) and gravimetric methods [22; 

41]. The OFPW samples from the wellheads and CDS Digboi were analyzed within 48 hours of 

collection. 
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Analytical measurements of inorganic elements. In the FP, OFPW samples are atomized 

into a flame, which emits characteristic colours based on the inorganic elements (Na, K, Ca and 

Li) present. A photo detector, with a narrow-band filter for specific wavelengths, measures these 

emissions and provides a digital readout of element concentrations. Chromium (Cr), manganese 

(Mn), iron (Fe), copper (Cu), and As were analysed using AAS, which determines inorganic 

element concentrations based on their ability to absorb light at specific wavelengths [13; 20]. 

Before sample measurement, the AAS instrument was calibrated using a 2% HNO3 blank solution 

to establish a baseline. Further, a series of standard solutions containing 1, 2, 3, and 4 ppm of As, 

Cr, Cu, Fe, and Mn were used to establish calibration for each metal. 

ICP-OES was utilized to quantify the concentrations of magnesium (Mg), molybdenum 

(Mo), nickel (Ni), lead (Pb), strontium (Sr), and zinc (Zn), in OFPW by measuring the light emitted 

by atoms excited in an argon (Ar) plasma, where the high temperature excites the atoms and ions 

of the elements present. The intensity of the emitted light, which is directly proportional to the 

elemental concentration, was measured following calibration with standard solutions of known 

concentrations. Fluoride (F⁻) concentrations were determined using a MPK system equipped with 

an ion-selective electrode. To maintain a constant ionic strength and pH, 0.5 mL of total ionic 

strength adjustment buffer (TISAB) was added, and calibration was carried out using fluoride 

standard solutions of 0.1 ppm, 1 ppm, and 10 ppm prepared in equal proportions with the buffer 

[13; 20]. 

Analytical measurements of inorganic anions. The concentration of Cl− ions in the OFPW 

was determined in accordance with ASTM D 4458 – 15. The method involves the precipitation of 

silver chloride (AgCl) by titration with 0.01N silver nitrate (AgNO3). A few drops of 2N potassium 

chromate (K2CrO3) were used as an endpoint indicator. The chemical reaction at the endpoint is 

represented by equation 1:  

AgNO3 + NaCl → AgCl2 + NaNO3     (1) 

HCO3
− and CO3

2− concentrations in the OFPW sample were determined following the ASTM D 

3875 – 15 standard method, using titration with 0.05N H2SO4 and employing phenolphthalein and 

methyl orange as indicators. SO4
2− was measured by titrating a 50 ml OFPW sample containing 3 

drops of methyl red indicator, with H2SO4 until an orange-red color appeared. BaCl4 was then 

added to precipitate BaSO4, which was digested at 80–90°C. The precipitate was screened through 

warm distilled water until free of Cl− ions, dried in a humidifier-controlled oven at 103°C, and 

then cooled in a desiccator before weighing [20; 40]. The SO4
2− concentration was then determined 

using the equation 2 as follows: 

SO4
2−in ppm =  

Amount of BaSO4 ×411.5

Amount of OFPW sample 
     (2) 

Results and Discussion 

The concentrations of 20 IEAs obtained from 10 OFPW samples are summarized in Table 

1-3. Analysing these IEAs is crucial for understanding their presence and impact on OFPW. Na 

concentrations in the OFPW samples ranged from 81.3 to 178.5 ppm, which are notably lower 

than the 3165 to 4480 ppm reported by Konwar D. et al. for the UAB oil field [40]. Potassium (K) 

levels were observed between 4.9 to 15.5 ppm, which also fall below the range of 39.1 to 275 ppm 

reported by the same study. In comparison, Li H. and Harati H.M. reported K concentrations of 
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5.8 to 8 ppm at the Wattenberg field and 59 to 64 ppm at the Al Hamada field, respectively [24; 

43]. Ca concentrations in the present study ranged from 120 to 198 ppm, which is below the range 

of 344 to 982 ppm reported by Konwar D. et. al., but higher than the 24.2 to 34.8 ppm and 60 to 

64 ppm ranges reported by Li H. and Harati H.M. for the Wattenberg and Al Hamada fields, 

respectively [24; 40; 43]. Mg concentrations were found to vary between 4.56 and 10.23 ppm. 

Na+ and Cl− were the principal contributors to salinity and total dissolved solids (TDS), 

while Mg, Ca, and K contributed to a lesser extent [7; 17]. Lithium (Li) concentrations ranged 

from 0.54 to 1.28 ppm, Sr from 2.97 to 4.89 ppm, Fe from 0.21 to 0.48 ppm, and Zn from 0.52 to 

1.29 ppm. Previous studies have reported Zn concentrations of 0.9 ppm at the Wattenberg field, 

and between 0.001 and 2.22 ppm at the Vafiflar field [6, 43]. Pb concentrations in the present study 

ranged from 0.44 to 0.78 ppm, Mn from 0.034 to 0.132 ppm, As from 0.0017 to 0.0054 ppm, and 

F from 4.5 to 8.7 ppm. No detectable concentrations of Cr, Mo, Cu, and Ni were observed in the 

OFPW samples.  

Cl− concentrations in the OFPW samples ranged from 64 to 115 ppm. HCO3
− levels varied 

between 104 to 185 ppm, while CO3
2−concentrations ranged from 50 to 90 ppm. SO4

2− 

concentrations were observed within the range of 27 to 48 ppm. In comparison, Konwar D. et al. 

reported Cl− concentrations ranging from 0.728 to 7.158 ppm in the UAB oil field, whereas Harati 

H.M. and Cakmakce et al. documented higher values, ranging from 442 to 479 ppm and 3199 to 

4004 ppm, in the Al Hamada oil field and Vakiflar field respectively [6; 24; 40]. The experimental 

values for Ca, K, Zn and Cl− were consistent with those of other researchers, but the Na values 

were notably lower than those reported in previous studies. 

Equation 3, derived from the correlations presented in Table 2, indicates that Na is positively 

correlated with As, Ca, F, Fe, K, Li, Mg, Mn, Pb, Sr, Zn, Cl−, HCO3
−, SO4

2− and CO3
2−. The validity 

of equation 3 was confirmed through the results illustrated in Figure 1. 

Na ∝(As)(Ca)(F)(Fe)(K)(Li)(Mg)(Mn)(Pb)(Sr)(Zn)(Cl−)(HCO3
−)(SO4

2−)(CO3
2−) (3) 

From equation 3, the relationship can be formulated as follows, 

Na = KIEA(As)(Ca)(F)(Fe)(K)(Li)(Mg)(Mn)(Pb)(Sr)(Zn)(Cl−)(HCO3
−)(SO4

2−)(CO3
2−)   (4) 

where, 

KIEA = proportionality constant of IEA. 

By applying the experimental values obtained during this research, we determined the KIEA 

values to be 3 e-9, 7 e-9, 1 e-7, 1 e-7, 6 e-8, 1 e-6, 1 e-6, 3 e-6, 1 e-4 and 8e-5 for samples S1 through 

S10, respectively. The average KIEA value from equation 4 is 2.1 e-5 which represents the 

proportionality constant for the IEA. 
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Table 1 

Concentrations of 20 IEAs in 10 OFPW samples 

 

Parameter Units CPCB limit S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Na 

ppm 

100 (max) 152.8 178.5 102.5 148.7 130.6 95.8 115 90.2 84.7 81.3 

K 20 (max) 15.5 12.3 9.5 10.8 8.7 7.7 8.3 6.5 5.2 4.9 

Ca 200 (max) 198 185 148 157 168 146 149 131 120 126 

Li 0.7 (max) 1.21 1.28 1.15 1.03 1.19 0.86 0.95 0.72 0.54 0.6 

Mg 100 (max) 9.57 10.23 7.85 8.23 8.92 6.21 6.56 5.72 4.56 4.98 

Sr 0.1 (max) 4.89 4.79 4.15 4.21 4.45 3.56 3.8 3.72 3.05 2.97 

Fe 1 (max) 0.45 0.48 0.37 0.41 0.35 0.29 0.38 0.28 0.23 0.21 

Zn 2 (max) 1.29 1.22 0.95 1.09 0.89 0.63 0.67 0.61 0.52 0.55 

Pb 0.1 (max) 0.78 0.76 0.65 0.58 0.56 0.61 0.52 0.53 0.44 0.47 

Mn 2 (max) 0.132 0.127 0.075 0.092 0.081 0.056 0.066 0.064 0.034 0.037 

As 0.05 (max) 0.0054 0.0051 0.0042 0.0046 0.0048 0.0039 0.0035 0.0029 0.0017 0.002 

F 1.5 (max) 8.7 8.4 7.2 7.9 7.5 5.3 6.2 6.5 4.5 4.9 

Cr 1 (max) – – – – – – – – – – 

Cu 0.2 (max) – – – – – – – – – – 

Mo 0.1 (max) – – – – – – – – – – 

Ni 3 (max) – – – – – – – – – – 

Cl− 1000 (max) 115 113 91 77 108 88 74 79 69 64 

HCO3
− 200 (max) 185 177 147 128 172 137 120 130 112 104 

CO3
2− 200 (max) 90 90 70 60 80 70 60 60 50 50 

SO4
2− 100 (max) 48 42 38 35 39 35 34 33 27 29 

 

 

Table 2 

Correlation analysis of 16 IEAs in 10 OFPW samples 

 
 Na K Ca Li Mg Sr Fe Zn Pb Mn As F Cl- HCO3

- SO4
2- CO3

2- 

Na 1                

K 0.865348 1               

Ca 0.899404 0.947626 1              

Li 0.83613 0.85056 0.898746 1             

Mg 0.925836 0.894478 0.945606 0.967548 1            
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Sr 0.889526 0.919751 0.94386 0.951444 0.97499 1           

Fe 0.928678 0.919408 0.895594 0.913172 0.924744 0.931604 1          

Zn 0.912902 0.954712 0.91547 0.880748 0.945716 0.930975 0.917729 1         

Pb 0.770944 0.915217 0.892376 0.833139 0.859514 0.866994 0.837289 0.881627 1        

Mn 0.929273 0.962026 0.955089 0.87138 0.941599 0.959228 0.937024 0.959581 0.913239 1       

As 0.85267 0.898871 0.930297 0.960215 0.955248 0.95515 0.90136 0.896014 0.861821 0.901017 1      

F 0.882493 0.903071 0.888526 0.90262 0.946198 0.97147 0.916334 0.946683 0.817586 0.951025 0.912397 1     

Cl- 0.743383 0.798903 0.902136 0.860099 0.887171 0.895044 0.738848 0.789878 0.863186 0.845087 0.862701 0.790884 1    

HCO3
- 0.755839 0.822616 0.911715 0.870222 0.900661 0.917783 0.757354 0.816408 0.864004 0.866236 0.874945 0.827332 0.996513 1   

SO4
2- 0.777252 0.937529 0.95975 0.893558 0.906128 0.939449 0.845511 0.884241 0.933485 0.928257 0.920737 0.883291 0.923551 0.937476 1  

CO3
2- 0.777691 0.8371 0.930761 0.879652 0.901616 0.905135 0.788557 0.811785 0.91094 0.878308 0.887629 0.803086 0.988636 0.981658 0.946029 1 

 

 

Table 3 

Comparative analysis of inorganic element and anion concentrations in OFPW reported across different oilfield basins from previous research studies 

 

Parameters Units 
Present study 

(n=10) 

Çakmakce et al. (2008) 

Vakiflar field 

[6] 

Harati HM (2012) 

Al Hamada field 

[24] 

Konwar et al. (2017) 

UAB field 

[40] 

Li H  

(2013) Wattenberg 

field [43] 

Na 

ppm 

81.3–178.5 3165–4480 – 277–2794 – 

K 4.9–15.5 – 59–64 39.1–275 5.8–8 

Ca 120–198 – 60–64 344–982 24.2–34.8 

Li 0.54–1.28 –  – 15–499.1 – 

Fe 0.21–0.48 1.63–30 – 0.024–2.47 – 

Zn 0.52–1.29 0.001–2.22 – – 0.9 

Pb 0.44–0.78 0.006–0.52 – – – 

Cl− 64–115 3199–4004 442–479 0.728–7.158 – 

SO4
2− 27–48 355–390 – – – 

Note: Empty cells (–) indicate data not presented in the referenced study.  
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Fig. 1. Variation of 15 IEAs in response to Na concentration (ppm) across 10 OFPW samples 

 

Establishing and Evaluating Relationships Between IEAs. Equation 4 was further 

validated by the linear trend lines presented in Figure 3 (a) – (h). The analysis revealed that Na is 

directly proportional to As, Ca, F, Fe, K, Li, Mg, Mn, Pb, Sr, Zn, 

(Cl−), (HCO3
−), (SO4

2−) and (CO3
2−).  

In Figure 2 (a), the relationship between Ca and K relative to Na was plotted, revealing that 

both Ca and K increase with Na. This analysis suggests that the concentration of Ca in the OFPW 

sample originates from rocks such as limestone, calcite, and dolomite is within permissible limits. 

Ca, a key determinant of water hardness, can affect the toxicity of other compounds and tends to 

precipitate at higher bicarbonate concentrations [20; 30; 37]. Similarly, the presence of K in 

OFPW, resulting from natural rock weathering, is consistent with these observations. In Figure 2 

(b), the relationship between Sr and Mg relative to Na was plotted, showing that both Sr and Mg 

increase with Na. This indicates that Sr, a naturally occurring element in rocks and soil, reacts 

slowly with OFPW to form Sr(OH)2 and H2 gas. Exposure to Sr can cause serious skin reactions, 

seizures, and interfere with blood clotting. Likewise, Mg, which is carried into OFPW from rocks 

and through human activities in the E&P industries, is also naturally occurring. It is found in 

minerals like dolomite {CaMg(CO3)2} and magnesite (MgCO3), and contributes to water hardness 

[32; 42; 53]. 

In Figure 2 (c), the relationship between Li and Fe relative to Na was examined, showing 

that both Li and Fe increase with Na. This analysis indicates that the concentration of Li in OFPW 

is relatively low and less harmful, posing minimal threat to aquatic environments. Similarly, Fe is 

a critical parameter for assessing the quality of OFPW reinjection. High Fe concentrations can lead 

to formation plugging, pipeline blockage, corrosion, and increased turbidity of OFPW [1; 31; 35; 

47; 57]. 
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Fig. 2. Relationship between IEAs and Na concentration in 10 OFPW samples 
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Figure 2(d) illustrates the relationship between Pb and Zn concentrations relative to Na in 

10 OFPW samples, revealing a clear positive correlation. Both Pb and Zn concentrations increase 

proportionally with rising Na levels, suggesting a shared source or geochemical behavior under 

similar salinity conditions. This trend underscores the environmental risk posed by the discharge 

of OFPW containing elevated levels of these heavy metals. Pb and Zn are well-documented 

contaminants in OFPW, often originating from corrosion of galvanized steel infrastructure, well 

casing materials, or from chemical additives used during drilling and hydraulic fracturing 

operations [25; 40; 45]. The mobilization of these metals in OFPW presents a significant threat to 

environmental receptors. If released untreated, such effluents may contaminate surface and 

groundwater, negatively affecting aquatic ecosystems, altering soil chemistry, and potentially 

entering the food chain, posing chronic toxicity risks to both wildlife and human populations [20; 

43; 56]. 

In Figure 2(e), the correlation between As and Mn with respect to Na is presented. Both 

elements exhibit increasing trends with Na concentration, indicating similar solubility or 

mobilization mechanisms under saline conditions. Notably, a crossover point is observed at  

Na = 120 ppm, where As and Mn concentrations are approximately equal. This intersection may 

reflect a shift in geochemical speciation or redox behavior under varying ionic strengths. Mn is 

known to oxidize readily in the presence of atmospheric oxygen, forming manganese 

oxyhydroxides that can co-precipitate with other trace metals, potentially influencing the fate and 

transport of contaminants in receiving environments [8; 37; 54; 57]. As, though typically present 

at trace levels in OFPW, is of particular concern due to its high toxicity and carcinogenicity. It 

often exists in multiple oxidation states, with its mobility influenced by redox potential, pH, and 

the presence of competing ions. The co-occurrence of Mn and As in saline produced water 

warrants careful monitoring, as their synergistic effects may enhance toxicity and complicate 

treatment processes [28; 32; 46]. 

Figure 2 (f), presents the relationship between Cl− and SO4
2−  concentrations relative to Na 

in 10 OFPW samples. Both Cl− and SO4
2− exhibit increasing trends with rising Na levels, indicative 

of a common salinity driven behavior or shared source within the OFPW. A crossover point is 

observed at Na = 115 ppm, where Cl− equals SO4
2− concentrations are approximately equal, 

suggesting a transitional point in ionic dominance that may reflect changes in geochemical 

conditions or water-rock interaction dynamics. Cl− is one of the most prevalent inorganic anions 

in OFPW and plays a significant role in determining its overall salinity. It reacts with inorganic 

elements to form salts, leading to increased salinity due to high NaCl concentrations. Cl− is 

naturally derived from subsurface formations and, when brought to the surface, readily dissolves 

in aqueous phases. Under specific thermodynamic conditions, it may volatilize indirectly via 

aerosol formation, potentially contributing to atmospheric salt loading. SO4
2−, while less abundant 

than Cl−, is of critical operational and environmental importance [4; 23; 39; 56]. Its concentration 

in OFPW influences the risk of scale formation, particularly of low-solubility sulfate minerals such 

as BaSO4, SrSO4 and CaSO4. These mineral precipitates can obstruct pipelines, production 

equipment, and injection wells, leading to significant maintenance and remediation costs. Accurate 

prediction and mitigation of such scaling tendencies require a thorough understanding of sulfate 

dynamics in relation to salinity, temperature, pH, and the presence of divalent cations. Moreover, 
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SO4
2− serves as an electron acceptor for sulfate-reducing bacteria (SRB), a group of anaerobic 

microorganisms commonly found in OFPW. These bacteria play a role in the biodegradation of 

organic compounds and the biogeochemical cycling of sulfur [27; 33; 43; 51].  

Figure 2 (g) illustrates the relationship between HCO3
− and CO3

2− concentrations relative to 

Na in OFPW samples. The data reveal a positive correlation, with both HCO3
− and CO3

2− levels 

increasing alongside Na concentrations. This trend suggests a shared geochemical behavior 

influenced by salinity and possibly pH, and confirms that these anions are naturally occurring 

constituents of OFPW. Their presence is not indicative of significant interaction with carbonate 

rich lithologies, as such conditions would typically result in substantially higher concentrations of 

carbonate species due to enhanced mineral dissolution [20, 34, 47, 55]. HCO3
− and CO3

2− are key 

contributors to the alkalinity of OFPW and play a critical role in buffering against acidification. 

They are also significant due to their involvement in scale formation, where One of the most 

common and problematic forms is CaCO3, which precipitates through reactions such as that shown 

in equation 5 [22; 35; 44]. 

Ca(HCO3)2 → CaCO3 + CO2 + H2O     (5) 

In Figure 2 (h), the relationship between F and Na was plotted, revealing that F increases 

with Na. This analysis suggests that elevated concentrations of F could cause eye and nose 

irritation upon contact with humans. Although F typically occurs in low concentrations in natural 

rocks, high levels of F can be harmful to the environment. It can damage or inhibit the growth of 

aquatic flora and fauna [48; 50; 51].  

Modelling IEAs using piper class scatter plot. In figure 3, the normalized data from the 

three different axes of the two equilateral triangles at the bottom were projected onto the diamond 

plot at the top, which was divided into five classes based on Ca concentration. 

a. In the first class, with Ca ranging from 120 to <131, two data points, (63, 42, 37, 58) and 

(63, 40, 37, 60), are represented by purple plus symbols. 

b. In the second class, with Ca ranging from 131 to <148, two data points, (62, 40, 38, 60) 

and (64, 39, 36, 61), are shown by light blue diamond symbols. 

c. In the third class, with Ca ranging from 148 to <157, two data points, (63, 45, 37, 55) and 

(62, 42, 38, 58), are marked with dark blue square symbols. 

d. In the fourth class, with Ca ranging from 157 to <185, two data points, (63, 50, 37, 50) and 

(62, 45, 38, 55), are denoted by yellow circle symbols. 

e. In the fifth class, with Ca ranging from 185 to <198.1, two data points, (64, 50, 36, 50) and 

(64, 45, 36, 55), are represented by red triangle symbols. 

The diamond plot analysis reveals that all sample points fall within the left quadrant, 

indicating that Ca(HCO3)2 is the predominant component in the OFPW samples [15; 20; 29; 34; 

49].  



https://doi.org/10.36906/2311-4444/25-4/08 T.J. Gogoi, S.B. Gogoi, T.V. Storchak, D. Konwar 

113 

 
Fig. 3. Design of IEA of S1 – S10 using piper class scatter plot 

 

Implications for water management and regulatory compliance 

The elevated concentrations of Na, Li, Sr, Pb, and F observed in this study exceed the CPCB 

permissible limits for surface water discharge. Nevertheless, the operational water-management 

strategy in the UAB relies on subsurface reinjection into depleted reservoir intervals, which 

substantially reduces the likelihood of direct environmental and human exposure. Under these 

disposal conditions, the aqueous phase containing the dissolved ions remains geologically isolated 

from freshwater aquifers and surface ecosystems, consistent with established OFPW management 

practices in India and other petroleum provinces [9; 16; 25; 48]. 

The hydro-chemical facies classification and correlation analysis presented in this study 

therefore have direct operational relevance, particularly for:  

(a) Formation Compatibility Assessment: Knowledge of the ionic composition is critical for 

predicting scaling potential, especially CaCO₃ and BaSO₄ precipitation, and for assessing 

corrosion hazards in injection tubing and well casings. The strong correlations between Na and 

divalent cations (Ca²⁺, Mg²⁺, Sr²⁺) indicate that high-salinity systems face an increased risk of 

mineral scale deposition during water–rock mixing [18; 45; 56].  

(b) Injectivity Management: Although Fe levels remain below CPCB discharge limits, 

oxidation during surface handling or mixing with residual oxygen in injection lines can lead to 

Fe(OH)3 precipitation, which may reduce reservoir permeability. The positive correlation between 

Fe and salinity suggests that periods of elevated Na warrant enhanced monitoring of Fe to 

minimize injectivity decline [24; 39; 42; 50]. 

(c) Contingency Planning and Emergency Response: In the unlikely event of accidental 

surface release or emergency discharge, the water quality characterization presented here supports 

rapid selection of targeted treatment technologies. The observed dominance of the Ca(HCO3)2 

facies indicates that pH adjustment and chemical precipitation would be among the most efficient 

pretreatment approaches prior to surface disposal [20; 31]. 

(d) Regulatory Documentation and Reporting: The analytical dataset generated in this 

investigation provides robust and defensible evidence to demonstrate compliance with subsurface 



Вестник НВГУ. № 4 (72) / 2025  ЭКОЛОГИЯ ЖИВОТНЫХ / ANIMAL ECOLOGY  

114 

reinjection authorization requirements under India’s Petroleum Rules and the environmental 

standards mandated by state pollution control boards [6; 24; 40; 53].  

Conclusion 

This study presents a comprehensive hydro-chemical assessment of untreated OFPW from 

the UAB, providing new insights into its chemical composition, hydro-chemical facies, and 

geochemical controls in a mature, high-salinity petroleum system. The predominance of the 

Ca(HCO3)2 facies confirms extensive water–rock interaction in carbonate and silicate rich 

lithologies, while exceedances of CPCB permissible limits for Na, Li, Sr, Pb, and F indicate the 

potential environmental risk associated with uncontrolled surface discharge. Notably, the 

correlation analysis revealed statistically robust positive relationships (r = 0.75–0.99) between Na 

and 15 inorganic parameters, with a proportionality constant (KIEA) averaging 2.1 e-5. These 

correlations are not merely numerical artifacts but reflect fundamental geochemical controls, ion 

exchange on clay minerals, common ion effects, and shared source materials. The resulting linear 

relationships between Na and constituent ions offer a predictive capability for estimating overall 

water composition from salinity measurements alone, providing a practical tool for rapid field 

assessment. 

The presence of Pb, Zn, and trace As presents credible environmental and ecological 

concerns under surface discharge scenarios, reinforcing the suitability of subsurface reinjection as 

the primary disposal practice in UAB operations. Conversely, Li and Sr, though detected at 

elevated levels, pose minimal toxicological risk and instead represent natural signatures of 

prolonged subsurface fluid–rock interaction. By integrating classical hydro-chemical techniques 

such as Piper trilinear diagrams with modern multivariate statistical approaches, including 

correlation matrices and empirical proportionality constants, this research demonstrates an 

effective framework for understanding and predicting OFPW behaviour in complex reservoir 

systems. The findings enhance operational decision making for scaling mitigation, injectivity 

management, and regulatory compliance, while contributing to the broader scientific knowledge 

base supporting environmentally responsible petroleum development in geologically mature 

hydrocarbon provinces.  
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AAS – Atomic Absorption Spectrophotometer API – American Petroleum Institute 

BCS – Barail Coal Shale BMS – Barial Main Sand 

CDS – Central Dehydration System CO – Crude Oil 

CPCB – Central Pollution Control Board E&P – Exploration and Production 

FP – Flame Photometer ICP-OES – Inductively Coupled Plasma 

Optical Emission Spectrophotometer 

IEA – Inorganic anions and elements KIEA – Proportionality constant of IEA 

MPK – Multi Parameter Kit OFPW – Oil Field Produced Water 

TDS – Total Dissolved Solid TISAB – Total Ionic Strength Adjustment 

Buffer 

TS-IV – Tipam Sand UAB – Upper Assam Basin 

WOR – Water-to-oil Ratio  
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