The Emergence of Complex Population Dynamics in Age-Structured Populations under Natural Selection for Fertility
- Authors: Neverova G.P.1, Frisman E.Y.2
-
Affiliations:
- Institute of Automation and Control Processes, Far East Branch of the Russian Academy of Sciences
- Institute for Complex Analysis of Regional Problems, Far East Branch of the Russian Academy of Sciences
- Issue: Vol 61, No 8 (2025)
- Pages: 100-120
- Section: МАТЕМАТИЧЕСКИЕ МОДЕЛИ И МЕТОДЫ
- URL: https://vestnik.nvsu.ru/0016-6758/article/view/693817
- DOI: https://doi.org/10.31857/S0016675825080091
- ID: 693817
Cite item
Abstract
The paper considers a microevolution model of two-stage population with limitation under the influence of natural selection regulating individual fertility. Analytical and numerical investigations of the model have been conducted, and parametric regions corresponding to different types of dynamic behavior have been identified. The final genetic composition of the population is shown to be determined by the reproductive potential values of heterozygotes and homozygotes. With higher productivity of heterozygotes, the model predicts stable polymorphism; under intermediate dominance, polymorphism transitions to monomorphism or the emergence of a new mutation. Reduced heterozygote reproductive potential leads to a “bistability trap”, when the system shifts to one of the possible monomorphic states depending on the initial allele frequency. Furthermore, it has been found that within a narrow range of parameter values, reduced heterozygote fertility can result in multistability, where both the bistability trap and stable polymorphism may emerge depending on initial allele frequencies. Consequently, variations in the current population structure can alter the direction of evolution. Additionally, an increase in average fertility destabilizes the population dynamics, with the nature of the resulting fluctuations being determined by ecological limitation.
About the authors
G. P. Neverova
Institute of Automation and Control Processes, Far East Branch of the Russian Academy of Sciences
Author for correspondence.
Email: galina.nev@gmail.com
Vladivostok, 690041 Russia
E. Y. Frisman
Institute for Complex Analysis of Regional Problems, Far East Branch of the Russian Academy of Sciences
Email: frisman@mail.ru
Birobidzhan, 679016 Russia
References
- Itô Y., Iwasa Y. Evolution of litter size: I. Conceptual reexamination // Res. Population Ecology. 1981. V. 23. № 2. P. 344–359.
- Евсиков В.И., Потапов М.А. Эволюционная экология плодовитости животных: 50 лет изучения размножения как связующего звена поколений млекопитающих // Вавил. журн. генетики и селекции. 2011. Т. 15. № 1. С. 7–21.
- Wilsterman K., Bautista A.I., Butler C.E. et al. Evolution of litter size: proximate and ultimate mechanisms // Integrative and Comparative Biology. 2024. V. 64. № 6. P. 1643–1660. https://doi.org/10.1093/icb/icae052
- Rauw W.M., Luiting P., Beilharz R.G. et al. Selection for litter size and its consequences for the allocation of feed resources: A concept and its implications illustrated by mice selection experiments // Livestock Production Sci. 1999. V. 60. № 2–3. P. 329–342. https://doi.org/10.1016/S0301-6226(99)00104-
- Koivula M., Strandén I., Mäntysaari E.A. Genetic and phenotypic parameters of age at first mating, litter size and animal size in Finnish mink // Animal. 2010. V. 4. № 2. P. 183–188. https://doi.org/10.1017/S1751731109991170
- Vostry L., Milerski M., Schmidova J., Vostra-Vydro- va H. Genetic diversity and effect of inbree- ding on litter size of the Romanov sheep // Small Ruminant Res. 2018. V. 168. P. 25–31. https://doi.org/10.1016/j.smallrumres.2018.09.004
- Евсиков В.И., Назарова Г.Г., Рогов В.Г. Популяционная экология водяной полевки (Aricola terrestris L.) в Западной Сибири. Сообщение I. Репродуктивная способность самок, полиморфных по окраске шерстного покрова, на разных фазах динамики численности популяции // Сиб. экол. журн. 1999. Т. 1. С. 59–68.
- Angerbjörn A., Tannerfeldt M., Erlinge S. Predator-prey relationships: Arctic foxes and lemmings // J. Anim. Ecol. 1999. V. 68. P. 34–49. https://doi.org/10.1046/j.1365-2656.1999.00258.x
- Tannerfeldt M., Angerbjörn A. Fluctuating resources and the evolution of litter size in the arctic fox // Oikos. 1998. V. 83. P. 545–559. https://doi.org/10.2307/3546681
- Tannerfeldt M., Angerbjörn A. Life history strategies in a fluctuating environment: establishment and reproductive success in the arctic fox // Ecography. 1998. V. 19. P. 209–220. https://doi.org/10.1111/j.1600-0587.1996.tb01247.x
- Elmhagen B., Tannerfeldt M., Verucci P., Anger- björn A. The arctic fox (Alopex lagopus) – an opportunistic specialist // J. Zool. 2000. V. 251. P. 139–149. https://doi.org/10.1111/j.1469-7998.2000.tb00599.x
- Axenovich T.I., Zorkoltseva I.V., Akberdin I.R. et al. Inheritance of litter size at birth in farmed arctic fo-xes (Alopex lagopus, Canidae, Carnivora) // Heredity. 2007. V. 98. P. 99–105. https://doi.org/10.1038/sj.hdy.6800908
- Фрисман Е.Я., Жданова О.Л. Эволюционный переход к сложным режимам динамики численности двухвозрастной популяции // Генетика. 2009. Т. 45. № 9. С. 1277–1286.
- Неверова Г.П., Жданова О.Л., Фрисман Е.Я. Возникновение сложных режимов динамики численности в ходе эволюции структурированной лимитированной популяции // Генетика. 2020. V. 56. № 6. С. 714–725. https://doi.org/10.31857/S0016675820060065
- Neverova G.P., Zhdanova O.L., Frisman E.Ya. Effects of natural selection by fertility on the evolution of the dynamic modes of population number: Bistability and multistability // Nonlinear Dynamics. 2020. V. 101. № 1. P. 687–709. https://doi.org/10.1007/s11071-020-05745-w
- Неверова Г.П., Фрисман Е.Я. Режимы динамики популяции с неперекрывающимися поколениями с учетом генетической и стадийной структур // Компьютерные исследования и моделирование. 2020. Т. 12. № 5. С. 1165–1190. https://doi.org/10.20537/2076-7633-2020-12-5-1165-1190
- Neverova G.P., Zhdanova O.L., Frisman E.Y. Evolutionary dynamics of structured populations with density-dependent limitation of juvenile survival // Commun. in Nonlinear Science and Numerical Simulation. 2022. V. 109. № 106272. https://doi.org/10.1016/j.cnsns.2022.106272
- Дажо Р. Основы экологии. М.: Прогресс, 1975. 416 с.
- Свирежев Ю.М., Логофет Д.О. Устойчивость биологических сообществ. М.: Наука, 1978. 352 с.
- Кузнецов А.П., Седова Ю.В. Бифуркации трехмерных и четырехмерных отображений: Универсальные свойства // Изв. высших учебных заведений. Прикладная нелинейная динамика. 2012. Т. 20. № 5. С. 26–43.
- Кузнецов А.П., Савин А.В., Седова Ю.В., Тюрюкина Л.В. Бифуркации отображений. Саратов: ООО «Издательский центр Наука», 2012. 196 с.
- Курош А.Г. Курс высшей алгебры. Изд-во «Лань», 2013. 432 с.
Supplementary files
