Сравнительный анализ кишечных метагеномов пациентов с депрессией по сигнатурным генам Faecalibacterium prausnitzii на штаммовом уровне

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С использованием двух различных методических подходов, биоинформатического и количественного ПЦР-анализа, был проведен сравнительный анализ кишечных метагеномов пациентов с депрессией и здоровых добровольцев по представленности сигнатурных бактериальных генов, кодирующих ключевые ферменты для продукции метаболитов, биомаркерных для депрессии, комплементарных генам из геномов комменсальной бактерии Faecalibacterium prausnitzii. С использованием in silico подхода была выявлена штаммовая специфичность этих биомаркерных генов, проведена их кластеризация на группы и исследовано распространение представителей различных групп в 36 метагеномах пациентов с депрессией и 38 здоровых добровольцев. К ряду генов из наиболее распространенных групп были подобраны праймеры, с использованием которых был проведен количественный ПЦР-анализ 15 метагеномов от пациентов с депрессией и 15 метагеномов от здоровых добровольцев. Сравнительный анализ полученных данных выявил статистически значимое снижение уровня представленности генов, кодирующих глутаматсинтазу GltB, аспарагинсинтетазу AsnA, серин-гидроксиметилтрансферазу в кишечных метагеномах пациентов с депрессией. На основе полученных данных можно рекомендовать эти гены как биомаркеры для разработки тест-систем для диагностики клинической депрессии по кишечному микробиому.

Полный текст

Доступ закрыт

Об авторах

О. В. Аверина

Институт общей генетики им. Н.И. Вавилова Российской академии наук

Автор, ответственный за переписку.
Email: olgavr06@mail.ru
Россия, Москва, 119991

А. С. Ковтун

Институт общей генетики им. Н.И. Вавилова Российской академии наук

Email: olgavr06@mail.ru
Россия, Москва, 119991

В. Н. Даниленко

Институт общей генетики им. Н.И. Вавилова Российской академии наук

Email: olgavr06@mail.ru
Россия, Москва, 119991

Список литературы

  1. Dantzer R., O’Connor J.C., Freund G.G. et al. From inflammation to sickness and depression: When the immune system subjugates the brain // Nat. Rev. Neurosci. 2008. V. 9. № 1. P. 46–56. https://doi.org/10.1038/nrn2297
  2. Bachmann S. Epidemiology of suicide and the psychiatric perspective // Int. J. Environ. Res. Public Health. 2018. V. 15. № 7. https://doi.org/10.3390/ijerph15071425
  3. Meyyappan A.C., Forth E., Wallace C.J.K. et al. Effect of fecal microbiota transplant on symptoms of psychiatric disorders: a systematic review // BMC Psychiatry. 2020. V. 20. № 1. e299. https://doi.org/10.1186/s12888-020-02654-5
  4. Аверина О.В., Даниленко В.Н. Микробиота кишечника человека: роль в становлении и функционировании нервной системы // Микробиология. 2017. Т. 86. № 1. С. 1–19. https://doi.org/10.7868/S0026365617010050
  5. Averina O.V., Zorkina Y.A., Yunes R.A. et al. Bacterial metabolites of human gut microbiota correlating with depression // Int. J. Mol. Sci. 2020. V. 21. № 23. e9234. https://doi.org/10.3390/ijms21239234
  6. Averina O.V., Poluektova E.U., Zorkina Y.A. et al. Diagnosis and treatment of depression // Int. J. Mol. Sci. 2024. V. 25. № 11. https://doi.org/10.3390/ijms25115782
  7. Kovtun A.S., Averina O.V., Angelova I.Y. et al. Alterations of the composition and neurometabolic profile of human gut microbiota in major depressive disorder // Biomedicines. 2022. V. 10. № 9. https://doi.org/10.3390/biomedicines10092162
  8. Hao Z., Wang W., Guo R. et al. Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behavior in rats // Psychoneuroendocrinology. 2019. V. 104. P. 132–142. https://doi.org/10.1016/j.psyneuen.2019.02.025
  9. Camacho C., Coulouris G., Avagyan V. et al. BLAST+: Architecture and applications // BMC Bioinform. 2009. V. 10. № 10. https://doi.org/10.1186/1471-2105-10-421
  10. Quinlan A.R., Hall I.M. BEDTools: A flexible suite of utilities for comparing genomic features // Bioinformatics. 2010. V. 26. № 6. P. 841–842. https://doi.org/10.1093/bioinformatics /btq033
  11. Wood D.E., Salzberg S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments // Genome Biol. 2014. V. 15. № 3. https://doi.org/10.1186/gb-2014-15-3-r46
  12. Sievers F., Wilm A., Dineen D. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega // Mol. Syst. Biol. 2011. V. 5. e539. https://doi.org/10.1038/msb.2011.75
  13. Untergasser A., Nijveen H., Rao X. et al. Primer3Plus, an enhanced web interface to Primer3 // Nucl. Acids Res. 2007. V. 35. P. W71–W74. https://doi.org/10.1093/nar/gkm306
  14. Cao Y., Shen J., Ran Z.H. Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: A meta-analysis and systematic review of the literature // Gastroenter. Resear. Pract. 2014. V. 2014. https://doi.org/10.1155/2014/872725
  15. Fitzgerald C.B., Shkoporov A.N., Sutton T.D.S. et al. Comparative analysis of Faecalibacterium prausnitzii genomes shows a high level of genome plasticity and warrants separation into new species-level taxa // BMC Genom. 2018. V. 19. № 1. e931. https://doi.org/10.1186/s12864-018-5313-6
  16. De Filippis F., Pasolli E., Ercolini D. Newly explored Faecalibacterium diversity is connected to age, lifestyle, geography, and disease // Curr. Biol. 2020. V. 30. № 24. P. 4932–4943. https://doi.org/10.1016/j.cub.2020.09.063
  17. Lopez-Siles M., Duncan S.H., Garcia-Gil L.J. et al. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics // ISME J. 2017. V. 11. P. 841–852.
  18. Lopez-Siles M., Martinez-Medina M., Suris-Valls R. et al. Changes in the abundance of Faecalibacterium prausnitzii phylogroups I and II in the intestinal mucosa of inflammatory bowel disease and patients with colorectal cancer // Inflamm. Bowel Dis. 2016. V. 22. № 1. P. 28–41. https://doi.org/10.1097/MIB.0000000000000590
  19. Benevides L., Burman S., Martin R. et al. New insights into the diversity of the genus Faecalibacterium // Front. Microbiol. 2017. V. 8. https://doi.org/10.3389/fmicb.2017.01790
  20. Bai Z., Zhang N., Jin Y. et al. Comprehensive analysis of 84 Faecalibacterium prausnitzii strains uncovers their genetic diversity, functional characteristics, and potential risks // Front. Cell. Infect. Microbiol. 2023. V. 12. https://doi.org/10.3389/fcimb.2022.919701
  21. Li W., Lin X., Liang H. et al. Genomic and functional diversity of the human-derived isolates of Faecalibacterium // Front. Microbiol. 2024. V. 15. https://doi.org/10.3389/ fmicb.2024.1379500
  22. Tanno H., Chatel J.-M., Martin R. et al. A new gene markers for classification and quantification of Faecalibacterium spp. in the human gut // FEMS Microbiol. Ecology. 2023. V. 99. № 5. https://doi.org/10.1093/femsec/fiad035
  23. Fu X., Lu Y., Wu J. et al. Alterations of plasma aspartic acid, glycine and asparagine levels in patients with major depressive disorder // Zhejiang Da Xue Xue Bao Yi Xue Ban 2012. V. 41. № 2. P. 132–138. Chinese. PMID: 22499508
  24. Pu J., Liu Y., Zhang H. et al. An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder // Mol. Psychiatry. 2021. V. 26. P. 4265–4276. https://doi.org/10.1038/s41380-020-0645-4
  25. Yang X., Wang G., Gong X. et al. Effects of chronic stress on intestinal amino acid pathways // Physiology & Behavior. 2019. V. 204. P. 199–209. https://doi.org/ 10.1016/j.physbeh. 2019. 03.001

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Приложение
Скачать (41KB)

© Российская академия наук, 2025