Получение и фотокаталитические свойства композитных фотокатализаторов TiO2-MCM-22
- Autores: Садовников А.А.1,2, Наранов Е.Р.1, Новоселова К.Н.2, Родригес Пинеда Р.А.1, Максимов А.Л.1
-
Afiliações:
- Институт нефтехимического синтеза им. А. В. Топчиева РАН
- Институт общей и неорганической химии им. Н. С. Курнакова РАН
- Edição: Volume 65, Nº 2 (2025)
- Páginas: 147-153
- Seção: Articles
- URL: https://vestnik.nvsu.ru/0028-2421/article/view/686755
- DOI: https://doi.org/10.31857/S0028242125020072
- EDN: https://elibrary.ru/KMELKU
- ID: 686755
Citar
Resumo
Разработан быстрый и простой метод синтеза эффективных фотокатализаторов на основе диоксида титана и мезопористого цеолита MCM-22 из различных прекурсоров титана. Полученные фотокатализаторы были проанализированы методами рентгенофазового анализа (РФА), низкотемпературной адсорбции азота, растровой электронной микроскопии (РЭМ). Фотокаталитическая активность образцов TiO2-MCM-22 была протестирована в реакциях фотокаталитического разложения красителя кристаллического фиолетового и окисления ацетона. Наибольшую фотокаталитическую активность продемонстрировал образец с соотношением TiO2-цеолит 1 : 1, полученный из тетрахлорида титана. Степень деградации кристаллического фиолетового составила 22% при УФ-облучении в течение 2 ч, а в реакции разложения ацетона активность составила 642 млн д. (выход CO2).
Palavras-chave
Texto integral

Sobre autores
Алексей Садовников
Институт нефтехимического синтеза им. А. В. Топчиева РАН; Институт общей и неорганической химии им. Н. С. Курнакова РАН
Autor responsável pela correspondência
Email: sadovnikov@ips.ac.ru
ORCID ID: 0000-0002-3574-0039
Rússia, Москва, 119991; Москва, 119991
Евгений Наранов
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: sadovnikov@ips.ac.ru
ORCID ID: 0000-0002-3815-9565
к. х. н.
Rússia, Москва, 119991Кристина Новоселова
Институт общей и неорганической химии им. Н. С. Курнакова РАН
Email: sadovnikov@ips.ac.ru
ORCID ID: 0009-0006-4139-1476
Rússia, Москва, 119991
Рикардо Родригес Пинеда
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: sadovnikov@ips.ac.ru
ORCID ID: 0009-0001-2744-2242
Rússia, Москва, 119991
Антон Максимов
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: sadovnikov@ips.ac.ru
ORCID ID: 0000-0001-9297-4950
д. х. н., академик РАН
Rússia, Москва, 119991Bibliografia
- Dong H., Zeng G., Tang L., Fan C., Zhang C., He X., He Y. An overview on limitations of -based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures // Water Res. 2015. V. 79. P. 128–146. https://dx.doi.org/10.1016/j.watres.2015.04.038
- Haghighat Mamaghani A.H., Haghighat F., Lee C.-S. Role of titanium dioxide () structural design/morphology in photocatalytic air purification // Appl. Catal. B: Environ. 2020. V. 269. ID118735. https://dx.doi.org/10.1016/j.apcatb.2020.118735
- Ao C.H., Lee S.C. Indoor air purification by photocatalyst immobilized on an activated carbon filter installed in an air cleaner // Chem. Eng. Sci. 2005. V. 60. № 1. P. 103–109. https://dx.doi.org/10.1016/j.ces.2004.01.073
- Sadovnikov A.A., Baranchikov A.E., Zubavichus Y.V., Ivanova O.S., Murzin V.Y., Kozik V.V., Ivanov V.K. Photocatalytically active fluorinated nano-titania synthesized by microwave-assisted hydrothermal treatment // J. Photochem. Photobiol. A. 2015. V. 303–304. P. 36–43. https://dx.doi.org/10.1016/j.jphotochem.2015.01.010
- Sadovnikov A.A., Naranov E.R., Maksimov A.L., Baranchikov A.E., Ivanov V.K. Photocatalytic activity of fluorinated titanium dioxide in ozone decomposition: 1 // Russ. J. Appl. Chem. 2022. V. 95, № 1. P. 118–125. https://dx.doi.org/10.1134/S1070427222010153
- Rueda-Marquez J.J., Levchuk I., Fernández Ibañez P., Sillanpää M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters // J. Cleaner Prod. 2020. V. 258. ID120694. https://dx.doi.org/10.1016/j.jclepro.2020.120694
- Shan A.Y., Mohd. Ghazi T.I., Rashid S.A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review // Appl. Catal. A: Gen. 2010. V. 389, № 1–2. P. 1–8. https://dx.doi.org/10.1016/j.apcata.2010.08.053
- Lin L., Wang H., Xu P. Immobilized -reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals // Chem. Eng. J. 2017. V. 310. Pt. 2. P. 389–398. https://dx.doi.org/10.1016/j.cej.2016.04.024
- Tran M.L., Fu C.-C., Chiang L.-Y., Hsieh C.-T., Liu S.-H., Juang R.-S. Immobilization of and -GO hybrids onto the surface of acrylic acid-grafted polymeric membranes for pollutant removal: Analysis of photocatalytic activity // J. Environ. Chem. Eng. 2020. V. 8, № 5. ID104422. https://dx.doi.org/10.1016/j.jece.2020.104422
- Gar Alalm M., Tawfik A., Ookawara S. Enhancement of photocatalytic activity of by immobilization on activated carbon for degradation of pharmaceuticals // J. Environ. Chem. Eng. 2016. V. 4, № 2. P. 1929–1937. https://dx.doi.org/10.1016/j.jece.2016.03.023
- Bahrudin N.N. Evaluation of degradation kinetic and photostability of immobilized /activated carbon bilayer photocatalyst for phenol removal // Appl. Surf. Sci. Adv. 2022. V. 7. ID100208. https://dx.doi.org/10.1016/j.apsadv.2021.100208
- Li F., Sun S., Jiang Y., Xia M., Sun M., Xue B. Photodegradation of an azo dye using immobilized nanoparticles of supported by natural porous mineral // J. Hazard. Mater. 2008. V. 152, № 3. P. 1037–1044. https://dx.doi.org/10.1016/j.jhazmat.2007.07.114
- de Oliveira W.V., Morais A.Í.S., Honorio L.M.C., Trigueiro P.A., Almeida L.C., Pena Garcia R.R., Viana B.C., Furtini M.B., Silva-Filho E.C., Osajima J.A. Immobilized on Fibrous Clay as Strategies to Photocatalytic Activity // Mat. Res. 2020. V. 23. № 1. ID e20190463. https://dx.doi.org/10.1590/1980-5373-mr-2019-0463
- Yu J.C., Wang X., Fu X. Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films // Chem. Mater. 2004. V. 16, № 8. P. 1523–1530. https://dx.doi.org/10.1021/cm049955x
- Younis S.A., Amdeha E., El-Salamony R.A. Enhanced removal of p-nitrophenol by β-- photocatalyst immobilized onto rice straw-based via factorial optimization of the synergy between adsorption and photocatalysis // J. Environ. Chem. Eng. 2021. V. 9, № 1. ID104619. https://dx.doi.org/10.1016/j.jece.2020.104619
- Wang B., Zhang G., Sun Z., Zheng S. Synthesis of natural porous minerals supported nanoparticles and their photocatalytic performance towards Rhodamine B degradation // Powder Technol. 2014. V. 262. P. 1–8. https://dx.doi.org/10.1016/j.powtec.2014.04.050
- Jansson I., Suárez S., Garcia-Garcia F.J., Sánchez B. Zeolite– hybrid composites for pollutant degradation in gas phase // Appl. Catal. B: Environ. 2015. V. 178. P. 100–107. https://dx.doi.org/10.1016/j.apcatb.2014.10.022
- Hu G., Yang J., Duan X., Farnood R., Yang C., Yang J., Liu W., Liu Q. Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications // Chem. Eng. J. 2021. V. 417. ID129209. https://dx.doi.org/10.1016/j.cej.2021.129209
- Kovalevskiy N.S., Lyulyukin M.N., Selishchev D.S., Kozlov D.V. Analysis of air photocatalytic purification using a total hazard index: Effect of the composite TiO2/zeolite photocatalyst // J. Hazard. Mater. 2018. V. 358. P. 302–309. https://dx.doi.org/10.1016/j.jhazmat.2018.06.035
- Jiang N., Shang R., Heijman S.G.J., Rietveld L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review // Water Res. 2018. V. 144. P. 145–161. https://dx.doi.org/10.1016/j.watres.2018.07.017
- Corma A., Corell C., Pérez-Pariente J. Synthesis and characterization of the MCM-22 zeolite // Zeolites. 1995. V. 15, № 1. P. 2–8. https://dx.doi.org/10.1016/0144-2449(94)00013-I
- Sadovnikov A.A., Nechaev E.G., Beltiukov A.N., Gavrilov A.I., Makarevich A.M., Boytsova O.V. Titania mesocrystals: working surface in photocatalytic reactions // Russ. J. Inorg. Chem. 2021. V. 66, № 4. P. 460–467. https://dx.doi.org/10.1134/S0036023621040197
- Садовников А.А., Новоселова К.Н., Судьин В.В., Наранов Е.Р. Влияние аниона аммиачного комплекса серебра на активность сформированных in situ Ag/-катализаторов // Нефтехимия. 2024. Т. 64, № 5. С. 491–498. https://dx.doi.org/10.31857/S0028242124050077
Arquivos suplementares
