Замещенные цеолиты ZSM‑22: Сравнение физико-химических и каталитических свойств (обзор)
- Авторлар: Ostroumova V.A.1
-
Мекемелер:
- Institute of Petrochemical Synthesis named after A. V. Topchieva of RAS
- Шығарылым: Том 65, № 4 (2025)
- Беттер: 251-282
- Бөлім: Articles
- URL: https://vestnik.nvsu.ru/0028-2421/article/view/693421
- DOI: https://doi.org/10.31857/S0028242125040014
- ID: 693421
Дәйексөз келтіру
Аннотация
In this review, a comparative analysis of the literature on the synthesis, physicochemical, and catalytic properties of substituted ZSM-22 zeolites is presented. The physicochemical characteristics of Ce, Fe, Ga, B, and V substituted ZSM-22 samples are compared with those of the parent analog based on X-ray phase analysis, transmission electron microscopy, scanning electron microscopy, low-temperature nitrogen adsorption-desorption, FTIR spectroscopy of adsorbed pyridine, UV spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption of ammonia, and others. The possibility of using substituted ZSM-22 zeolites in the reactions of hydroisomerization of long-chain hydrocarbons, isomerization of butenes, methanol conversion to olefins, decomposition of nitrous oxide, disproportionation of ethylbenzene, and hydroxylation of arenes to phenols is demonstrated.
Негізгі сөздер
Авторлар туралы
V. Ostroumova
Institute of Petrochemical Synthesis named after A. V. Topchieva of RAS
Хат алмасуға жауапты Автор.
Email: ostroumova@ips.ac.ru
Moscow, 119991 Russia
Әдебиет тізімі
- Sai Prasad P.S., Bae J.W., Kang S.-H., Lee Y.-J., Jun K.-W. Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts: the superiority of ferrierite over the other zeolites // Fuel Process. Technol. 2008. V. 89. № 12. P. 1281–1286. http://dx.doi.org/10.1016/j.fuproc.2008.07.014
- https://europe.iza-structure.org/IZA-SC/framework. php? ID=239
- Del Campo P., Olsbye U., Lillerud K.P., Svelle S., Beato P. Impact of post-synthetic treatments on unidirectional H-ZSM-22 zeolite catalyst: towards improved clean MTG catalytic process // Catal. Today. 2018. V. 299. P. 135–145. https://doi.org/10.1016/j.cattod.2017.05.011
- Gao S.-B., Zhao Z., Lu X.-F., Chi K.-B., Duan A.J., Liu Y.-F., Meng X.-B., Tan M.-W., Yu H.-Y., Shen Y.-G., Li M.-C. Hydrocracking diversity in n-dodecane isomerization on Pt/ZSM-22 and Pt/ZSM-23 catalysts and their catalytic performance for hydrodewaxing of lube base oil // Pet. Sci. 2020. V. 17. P. 1752–1763. https://doi.org/10.1007/s12182-020-00500-7
- Redekop E.A., Lazzarinia A., Bordigaa S., Olsbey U. A temporal analysis of products (TAP) study of C2-C4 alkene reactions with a well-defined pool of methylating species on ZSM-22 zeolite // J. Catal. 2020. V. 385. P. 300–312. https://doi.org/10.1016/j.jcat.2020.03.020
- Liu Z., Chu Y., Tang X., Huang L., Li G., Yi X., Zheng A. Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM-12 and ZSM-22 // J. Phys. Chem. C. 2017. V. 121. № 41. P. 22872–22882. https://doi.org/10.1021/acs.jpcc.7b07374
- Valyocsik E.W. Synthesis of zeolite ZSM-22. 1984. US Patent No 4902406. https://patentimages.storage.googleapis.com/b5/79/a5/6c83073872b042/US4902406.pdf
- Verdujin J.P., Martens L.R.M. ZSM-22 zeolite. US Patent No 5783168. https://patentimages.storage.googleapis.com/a9/e3/ff/dfe25bc56bcbc62b/US5783168.pdf
- de Sousa L.V., Ribeiro T.R.S., da Silva B.J.B., Quintela P.H.L., Alencar S.L., de Pacheco Filha J.G.A., de Silva A.O.S. Different approaches to the synthesis of ZSM-22 zeolite with application in n-heptane cracking // Res. Soc. Develop. 2022. V. 11. № 3. P. 1–17. http://dx.doi.org/10.33448/rsd-v11i3.26070
- Nishiyama N., Ueyama K., Matsukata M. Synthesis of defect-free zeolite-alumina composite membranes by a vapor-phase transport method // Micropor. Mater. 1996. V. 7. № 6. P. 299–308. https://doi.org/10.1016/S0927-6513(96)00053-3
- Sato S., Yu-u Y., Yahiro H., Mizuno N., Iwamoto M. Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines // Appl. Catal. 1991. V. 70. № 1. P. L1–L5. https://doi.org/10.1016/S0166-9834(00)84146-9
- Noreña-Franco L., Hernandez-Perez I., Aguilar-Pliego J., Maubert-Franco A. Selective hydroxylation of phenol employing Cu–MCM-41 catalysts // Catal. Today. 2002. V. 75. № 1–4. P. 189–195. https://doi.org/10.1016/S0920-5861(02)00067-6
- Weitkamp J. Isomerization of long-chain n-alkanes on a Pt/CaY zeolite catalyst // Ind. Eng. Chem. Prod. Res. Dev. 1982. V. 21. № 4. P. 550–558. https://doi.org/10.1021/i300008a008
- Mériaudeau P., Tuan V.A., Nghiem V.T., Lai S.Y., Hung L.N., Naccache C. SAPO-11, SAPO-31, and SAPO-41 molecular sieves: synthesis, characterization, and catalytic properties in n-octane hydroisomerization // J. Catal. 1982. V. 169. № 1. P. 55–66. https://doi.org/10.1006/jcat.1997.1647
- Parmar S., Pant K.K., John M., Kumar K., Pal S.M., Newalkar B.L. Hydroisomerization of n-hexadecane over Pt/ZSM-22 framework: Effect of divalent cation exchange // J. Mol. Catal. A: Chem. 2015. V. 404–405. P. 47–56. https://doi.org/10.1016/j.molcata.2015.04.012
- Wu X., Qiu M., Chen X., Yu G., Yu X., Yang Ch., Sun J., Liu Z., Sun Y. Enhanced n-dodecane hydroisomerization performance by tailoring acid sites on bifunctional Pt/ZSM-22 via alkaline treatment // New J. Chem. 2018. V. 42. P. 111–117. https://doi.org/10.1039/C7NJ03417B
- Liu S.Y., Zhang L., Zhang L., Zhang H.K., Ren J., Function of well-established mesoporous layers of recrystallized ZSM-22 zeolites in the catalytic performance of n-alkane isomerization // New J. Chem. 2020. V. 44. P. 4744–4754. https://doi.org/10.1039/C9NJ06273D
- Liu S.Y., Ren J., Zhang H.K., Lv E.J., Yang Y., Li Y.W. Synthesis, characterization and isomerization performance of micro/mesoporous materials based on H-ZSM-22 zeolite // J. Catal. 2016. V. 335. P. 11–23. https://doi.org/10.1016/j.jcat.2015.12.009
- Chi K., Zhao Zh., Tian Zh., Hu Sh., Yan L., Li T., Wang B., Meng X., Gao Sh., Tan M., Liu Y. Hydroisomerization performance of platinum supported on ZSM-22/ZSM-23 intergrowth zeolite catalyst // Pet. Sci. 2013. V. 10. P. 242–250. https://doi.org/10.1007/s12182-013-0273-6
- Burton A.W., Zones S.I., Rea T., Chan I.Y. Preparation and characterization of SSZ-54: A family of MTT/TON intergrowth materials // Micropor. Mesopor. Mater. 2010. V. 132. № 1–2. P. 54–59. https://doi.org/10.1016/j.micromeso.2009.10.023
- Munusamy K., Das R.K., Ghosh S., Kishore Kumar S.A., Pai S., Newalkar B.L. Synthesis, characterization and hydroisomerization activity of ZSM-22/23 intergrowth zeolite // Micropor. Mesopor. Mater. 2018. V. 266. P. 141–148. https://doi.org/10.1016/j.micromeso.2018.02.044
- Wang Q., Sim L.B., Xie J., Ye S., Fu J., Wang J., Zhang N., Zheng J., Chen B. Promotion effect of cerium in ZSM-22 zeolite on the hydroisomerization of n-hexadecane // Micropor. Mesopor. Mater. 2023. V. 360. ID 112720. https://doi.org/10.1016/j.micromeso.2023.112720
- Liu S.Y., Ren J., Zhu S., Zhang H.K., Lv E.J., Xu J., Li Y.W. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance // J. Catal. 2015. V. 330. P. 485–496. https://doi.org/10.1016/j.jcat.2015.07.027
- Liu S.Y., He Y.R., Zhang H.K., Chen Z.Q., Lv E.J., Ren J., Yun Y.F., Wen X.D., Li Y.W. Design and synthesis of Ga-doped ZSM-22 zeolites as highly selective and stable catalysts for n-dodecane isomerization // Catal. Sci. Technol. 2019. V. 9. P. 2812–2827. https://doi.org/10.1039/C9CY00414A
- Singh A.P., Reddy K.R. Synthesis, characterization, and catalytic activity of gallosilicate analogs of zeolite ZSM-22 // Zeolites. 1994. V. 14. № 4. P. 290–294. https://doi.org/10.1016/0144-2449(94)90098-1
- Verboekend D., Thomas K., Milina M., Mitchell S., Pérez-Ramirez., Gilson J.-P. Towards more efficient monodimensional zeolite catalysts: n-alkane hydro-isomerization on hierarchical ZSM-22 // Catal. Sci. Technol. 2011. V. 1. P. 1331–1335. https://doi.org/10.1039/C1CY00240F
- Dooley K.M., Chang C., Price G.L. Effects of pretreatments on state of gallium and aromatization activity of gallium/ZSM-5 catalysts // Appl. Catal. A: Gen. 1992. V. 84. № 1. P. 17–30. https://doi.org/10.1016/0926-860X(92)80336-B
- Masih D., Kobayashi T., Baba T. Hydrothermal synthesis of pure ZSM-22 under mild conditions // Chem. Commun. 2007. № 31. P. 3303–3305. https://doi.org/10.1039/B704787H
- Chandwadkar A.J., Bhat R.N., Ratnasamy P. Synthesis of iron-silicate analogs of zeolite mordenite // Zeolites. 1991. V. 11. № 1. P. 42–47. https://doi.org/10.1016/0144-2449(91)80354-3
- Luo Y., Wang Z., Jin S., Zhang B., Sun H., Yuan X., Yang W. Synthesis and crystal growth mechanism of ZSM-22 zeolite nanosheets // CrystEngCom, 2016. V. 18. № 30. P. 5611–5615. https://doi.org/10.1039/C6CE00773B
- Kumar N., Lindfors L.E., Byggningsbacka R. Synthesis and characterization of H-ZSM-22, Zn-H-ZSM-22 and Ga-H-ZSM-22 zeolite catalysts and their catalytic activity in the aromatization of n-butane // Appl. Catal. A: Gen. 1996. V. 139. № 1–2. P. 189–199. https://doi.org/10.1016/0926-860X(95)00327-4
- Zhou H., Zhu W., Shi L., Liu H., Liu S.P., Xu S.T., Ni Y., Liu Y., Li L., Liu Z. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate // Catal. Sci. Technol. 2015. V. 5. P. 1961–1968. https://doi.org/10.1039/C4CY01580K
- Li Y., Huang S.Y., Cheng Z.Z., Cai K., Li L.D., Milan E., Lv J., Wang Y., Sun Q., Ma X.B. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Brønsted acids // Appl. Catal. B: Environ. 2019. V. 56. ID 117777. https://doi.org/10.1016/j.apcatb.2019.117777
- Calis G., Frenken P., de Boer F., Swolfs A., Hefni M.A. Synthesis and spectroscopic studies of Fe3+ substituted ZSM-5 zeolite // Zeolites. 1987. V. 7. № 4. P. 319–326. https://doi.org/10.1016/0144-2449(87)90034-0
- Loeffler E., Peuker C., JerSchkewitz. The influence of dealumination on the infrared spectra of H-ZSM-5 // Catal. Today. 1988. V. 3. № 5. P. 415–420. https://doi.org/10.1016/0920-5861(88)87023-8
- Lanh H.D., Tuan V.A., Kosslick H., Parlitz B., Fricke R., Vólter J. n-Hexane aromatization on synthetic gallosilicates with MFI structure // Appl. Catal. A: Gen. 1993. V. 103. № 2. P. 205–222. https://doi.org/10.1016/0926-860X(93)85052-Q
- Wu Y.J., Wang J., Liu P., Zhang W., Gu J., Wang X.J. Framework-substituted lanthanide MCM-22 zeolite: synthesis and characterization // J. Am. Chem. Soc. 2010. V. 132. № 51. P. 17989–17991. https://doi.org/10.1021/ja107633j
- Anandan C., Bera P. XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates // Appl. Surf. Sci. 2013. V. 283. P. 297–303. https://doi.org/10.1016/j.apsusc.2013.06.104
- Inui T., Nagata H., Takeguchi T., Iwamoto S., Matsuda H., Inoue M. Environments of iron in Fe-silicates synthesized by the rapid crystallization method // J. Catal. 1993. V. 139. № 2. P. 482–489. https://doi.org/10.1006/jcat.1993.1042
- Hensen E.J.M., Zhu Q., Janssen R.A.J., Magusin P.C.M.M., Kooyman P.J., van Santen R.A. Selective oxidation of benzene to phenol with nitrous oxide over MFI zeolites: 1. On the role of iron and aluminum // J. Catal. 2005. V. 233. № 1. P. 123–135. https://doi.org/10.1016/j.jcat.2005.04.009
- Bordiga S., Buzzoni R., Geobaldo F., Lamberti C., Giamello E., Zecchina A., Leofanti G., Petrini G., Tozzola G., Vlaic G. Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods // J. Catal. 1996. V. 158. № 2. P. 486–501. https://doi.org/10.1006/jcat.1996.0048
- Fejes P., Nagy J.B., Halász J., Oszkó A. Heat-treatment of isomorphously substituted ZSM-5 zeolites and its structural consequences: An X-ray diffraction,29Si MAS-NMR, XPS and FT-IR spectroscopy study // Appl. Catal. A: Gen. 1998. V. 175. № 1–2. P. 89–104. https://doi.org/10.1016/S0926–860X(98)00212-9
- Zhang H., Chu L., Xiao Q., Zhu L., Yang Ch., Meng X., Xiao F.-S. One-pot synthesis of Fe-Beta zeolite by an organotemplate-free and seed-directed route // J. Mater. Chem. A. 2013. V. 1. P. 3254–3257. https://doi.org/10.1039/C3TA01238G
- Yang W.C., Li C.F., Wang H.Y., Li X.Y., Zhang W.I., Li H.L. Cobalt doped ceria for abundant storage of surface-active oxygen and efficient elemental mercury oxidation in coal combustion flue gas // Appl. Catal. B: Environ. 2018. V. 239. P. 233–244. https://doi.org/10.1016/j.apcatb.2018.08.014
- Qing M., Yang Y., Wu B., Xu J., Zhang C., Gao P., Li Y. Modification of Fe–SiO2 interaction with zirconia for iron-based Fischer–Tropsch catalysts // J. Catal. 2011. V. 279. № 1. P. 111–122. https://doi.org/10.1016/j.jcat.2011.01.005
- Seyma H., Wang D., Soma M. X-ray photoelectron microscopic imaging of the chemical bonding state of Si in a rock sample // Surf. Interface Anal. 2004. V. 36. № 7. P. 609–612. https://doi.org/10.1002/sia.1784
- Kumar R., Ratnasamy P. Isomorphous substitution of iron in the framework of zeolite ZSM-23 // J. Catal. 1990. V. 121. № 1. P. 89–98. https://doi.org/10.1016/0021-9517(90)90219-A
- Gawande M.B., Deshpande S.S., Sonavane S.U., Jayaram R.V. A novel sol–gel synthesized catalyst for Friedel–Crafts benzoylation reaction under solvent-free conditions // J. Mol. Catal. A: Chem. 2005. V. 241. № 1–2. P. 151–155. https://doi.org/10.1016/j.molcata.2005.06.069
- Zhang F., Du N., Li H., Liang X., Hou W. Sorption of Cr(VI) on Mg-Al-Fe layered double hydroxides synthesized by a mechanochemical method // RSC Adv. 2014. V. 4. P. 46823–46830. https://doi.org/10.1039/C4RA07553F
- Diaz Y., Melo L., Mediavilla M., Albornoz A., Brito J.L. Characterization of bifunctional Pt/H[Ga]ZSM5 and Pt/H[Al]ZSM5 catalysts: II. Evidences of a Pt–Ga interaction // J. Mol. Catal. A: Chem. 2005. V. 227. № 1–2. P. 7–15. https://doi.org/10.1016/j.molcata.2004.09.050
- Price G.L., Kanazirev V. Ga2O3/HZSM-5 propane aromatization catalysts: Formation of active centers via solid-state reaction // J. Catal. 1990. V. 126. P. 267–278. https://doi.org/10.1016/0021-9517(90)90065-R
- Li M., Zhou Y., Oduro I.N., Fang Y. Comparative study on the catalytic conversion of methanol and propanal over Ga/ZSM-5 // Fuel. 2016. V. 168. P. 68–75. https://doi.org/10.1016/j.fuel.2015.11.076
- Kim M.Y., Lee K., Choi M. Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO-11 on n-dodecane hydroisomerization selectivity // J. Catal. 2014. V. 319. P. 232–238. https://doi.org/10.1016/j.jcat.2014.09.001
- Yang X., Ma H., Xu Z., Xu Y., Tian Z., Lin L. Hydroisomerization of n-dodecane over Pt/MeAPO-11 (Me = Mg, Mn, Co or Zn) catalysts // Catal. Commun. 2007. V. 8. № 8. P. 1232–1238. https://doi.org/10.1016/j.catcom.2006.11.005
- Segawa K., Hiroyasu T. Highly selective methylamine synthesis over modified mordenite catalysts // J. Catal. 1991. V. 131. № 2. P. 482–490. https://doi.org/10.1016/0021-9517(91)90280-H
- Yuan S.P., Wang J.G., Li Y.W., Peng S.Y. Theoretical studies on the properties of acid site in isomorphously substituted ZSM-5 // J. Mol. Catal. A: Chem. 2002. V. 178. № 1–2. P. 267–274. https://doi.org/10.1016/S1381-1169(01)00335-1
- Chatterjee A., Iwasaki T., Ebina T., Miyamoto A. Theoretical studies on the properties of acid site in isomorphously substituted ZSM-5 // Micropor. Mesopor. Mater. 1998. V. 21. № 4–6. P. 421–428. https://doi.org/10.1016/S1387-1811(98)00051-1
- Matsuura H., Katada N., Niwa M. Additional acid site on HZSM-5 treated with basic and acidic solutions as detected by temperature-programmed desorption of ammonia // Micropor. Mesopor. Mater. 2003. V. 66. № 1–2. P. 283–296. https://doi.org/10.1016/j.micromeso.2003.09.020
- Challoner R., Harris R.K., Barri S.A.I., Taylor M.J. An investigation of Brönsted acidity in gallosilicate-MFI (Ga-ZSM-5) // Zeolites. 1995. V. 11. № 8. P. 827–831. https://doi.org/10.1016/S0144-2449(05)80063-6
- Inui T., Matsuba K., Tanaka Y. Comprehensive description of the acidic property of effective metallosilicate catalysts by computer simulation // Catal. Today. 1995. V. 23. № 4. P. 317–323. https://doi.org/10.1016/0920-5861(94)00144-Q
- Guo L., Bao X., Fan Y., Shi G., Liu H., Bai D. Impact of cationic surfactant chain length during SAPO-11 molecular sieve synthesis on structure, acidity, and n-octane isomerization to di-methyl hexanes // J. Catal. 2012. V. 294. P. 161–170. https://doi.org/10.1016/j.jcat.2012.07.016
- Zeng S., Blanchard J., Breysse M., Shi Y., Shu X., Nie H., Li D. Post-synthesis alumination of SBA-15 in aqueous solution: A versatile tool for the preparation of acidic Al-SBA-15 supports // Micropor. Mesopor. Mater. 2005. V. 85. № 3. P. 297–304. https://doi.org/10.1016/j.micromeso.2005.06.031
- Camblor M.A., Pe rez-Pariente J., Forne V. Synthesis and characterization of gallosilicates and galloaluminosilicates isomorphous to zeolite Beta // Zeolites. 1992. V. 12. № 3. P. 280–286. https://doi.org/10.1016/S0144-2449(05)80296-9
- Strodel P., Neyman K.M., Knözinger H., Rösch N. Acidic properties of [Al], [Ga] and [Fe] isomorphously substituted zeolites. Density functional model cluster study of the complexes with a probe CO molecule // Chem. Phys. Lett. 1995. V. 240. № 5–6. P. 547–552. https://doi.org/10.1016/0009-2614(95)00583-P
- Knaeble W., Carr R.T., Iglesia E. Mechanistic interpretation of the effects of acid strength on alkane isomerization turnover rates and selectivity // J. Catal. 2014. V. 319. P. 283–296. https://doi.org/10.1016/j.jcat.2014.09.005
- Chen Y., Li C., Chen X., Liu Y., Tsang C.-W., Liang C. Synthesis and characterization of iron-substituted ZSM-23 zeolite catalysts with highly selective hydroisomerization of n-hexadecane // Ind. Eng. Chem. Res. 2018. V. 57. № 41. P. 13721–13730. https://doi.org/10.1021/acs.iecr.8b03806
- Noh G., Shi Z., Zones S.I., Iglesia E. Isomerization and β-scission reactions of alkanes on bifunctional metal-acid catalysts: consequences of confinement and diffusional constraints on reactivity and selectivity // J. Catal. 2018. V. 368. P. 389–410. https://doi.org/10.1016/j.jcat.2018.03.033
- Wang G., Liu Q., Su W., Li X., Jiang Z., Fang X., Han C., Li C. Hydroisomerization activity and selectivity of n-dodecane over modified Pt/ZSM-22 catalysts // Appl. Catal. A: Gen. 2008. V. 335. № 1. P. 20–27. https://doi.org/10.1016/j.apcata.2007.11.002
- Jamil A.K., Muraza O., Miyake K., Ahmed M.H.M., Yamani Z.H., Hirota Y., Nishiyama N. Stable production of gasoline-ranged hydrocarbons from dimethyl ether over iron-modified ZSM-22 zeolite // Energу Fuels. 2018. V. 32. № 11. P. 11796–11801. https://doi.org/10.1021/acs.energyfuels.8b03008
- Jamil A.K., Muraza O., Yoshioka M., Al-Amer A., Yamani Z.H., Yokoi T. Selective production of propylene from methanol conversion over nanosized ZSM-22 zeolites // Ind. Eng. Chem. Res. 2014. V. 53. № 50. P. 19498–19505. https://doi.org/10.1021/ie5038006
- Jamil A.K., Nishitoba T., Ahmed M.H.M., Yamani Z.H., Yokoi T., Muraza O. Stable boron-modified ZSM-22 zeolite catalyst for selective production of propylene from methanol // Energy Fuels. 2019. V. 33. № 12. P. 12679–12684. https://doi.org/10.1021/acs.energyfuels.9b03009
- Wang S., Li S., Zhang L., Qin Z., Dong M., Li J., Wang J., Fan W. Insight into the effect of incorporation of boron into ZSM-11 on its catalytic performance for conversion of methanol to olefins // Catal. Sci. Technol. 2017. V. 7. № 20. P. 4766–4779. https://doi.org/10.1039/C7CY01428G
- Zhu Q., Kondo J.N., Yokoi T., Setoyama T., Yamaguchi M., Takewaki T., Domen K., Tatsum T. The influence of acidities of boron- and aluminium-containing MFI zeolites on co-reaction of methanol and ethene // Phys. Chem. Chem. Phys. 2011. V. 13. № 32. P. 14598–14605. https://doi.org/10.1039/C1CP20338J
- Chen J., Liang T., Li J., Wang S., Qin Z., Wang P., Huang L., Fan W., Wang J. Regulation of framework aluminum siting and acid distribution in H-MCM-22 by boron incorporation and its effect on the catalytic performance in methanol to hydrocarbons // ACS Catal. 2016. V. 6. № 4. P. 2299–2313. https://doi.org/10.1021/acscatal.5b02862
- Jamil A.K., Muraza O., Ahmed M.H., Zainalabdeen A., Muramoto K., Nakasaka Y., Yamani Z.H., Yoshikawa T., Masuda T. Hydrothermally stable acid-modified ZSM-22 zeolite for selective propylene production via steam-assisted catalytic cracking of n-hexane // Micropor. Mesopor. Mater. 2018. V. 260. P. 30–39. https://doi.org/10.1016/j.micromeso.2017.10.016
- Ma M., Huang X., Zhan E., Zhou Y., Xue H., Shen W. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity // J. Mater. Chem. A. 2017. V. 5. № 19. P. 8887–8891. https://doi.org/10.1039/C7TA02477K
- Hu Z., Zhang H., Wang L., Zhang H., Zhang Y., Xu H., Shen W., Tang Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction // Catal. Sci. Technol. 2014. V. 4. № 9. P. 2891–2895. https://doi.org/10.1039/C4CY00376D
- Asensi M.A., Corma A., Martinez A., Derewinski M., Krysciak J., Tamhankar S.S. Isomorphous substitution in ZSM-22 zeolite. The role of zeolite acidity and crystal size during the skeletal isomerization of n-butene // Appl. Catal. A: Gen. 1998. V. 174. № 1–2. P. 163–175. https://doi.org/10.1016/S0926-860X(98)00166-5
- Kasture M., Krysciak J., Matachowski L., Machej T., Derewifiski M. Nitrous oxide decomposition over iron exchanged [AI]- and [Fe]-ZSM-22 // Stud. Surf. Sci. Catal. 1999. V. 125. P. 579–586. https://doi.org/10.1016/S0167-2991(99)80262-6
- Kapteijn F., Rodriguez-Mirasol J., Moulijn J.A. Heterogeneous catalytic decomposition of nitrous oxide // Appl. Catal. B: Environ. 1996. V. 9. № 1–4. P. 25–64. https://doi.org/10.1016/0926-3373(96)90072-7
- Kumar R., Patnasamy P. Isomerization and formation of xylenes over ZSM-22 and ZSM-23 zeolites // J. Catal. 1989. V. 116. № 2. P. 440–448. https://doi.org/10.1016/0021-9517(89)90110-3
- Kokotailo G.T., Schlenker J.L., Dwyer F.G., Valyocsik E.W. The framework topology of ZSM-22: a high silica zeolite // Zeolites 1985. V. 5. № 6. P. 349–351. https://doi.org/10.1016/0144-2449(85)90122-8
- Kustov L.M., Kazansky V.B., Raatnasamy P. Spectroscopic investigation of iron ions in a novel ferrisilicate pentasil zeolite // Zeolites. 1987. V. 7. № 1. P. 79–83. https://doi.org/10.1016/0144-2449(87)90125-4
- Szostak R., Thomas T.L. Reassessment of zeolite and molecular sieve framework infrared vibrations // J. Catal. 1986. V. 101. № 2. P. 549–552. https://doi.org/10.1016/0021-9517(86)90286-1
- Montes A., Perot G., Guisnet M. Cracking of n-hexane on Na, H-mordenite: Coke poisoning // React. Kinet. Catal. Lett. 1985. V. 29. P. 79–84. https://doi.org/10.1007/BF02067952
- Chu C.T.W., Chang C.D. Isomorphous substitution in zeolite frameworks. 1. Acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [Al]-ZSM-5 // J. Phys. Chem. 1985. V. 89. № 9. P. 1569–1571. https://doi.org/10.1021/j100255a005
- Yuan C., Liang Y., Hernandez T., Berriochoa A., Houl K.N., Siegel D. Metal-free oxidation of aromatic carbon-hydrogen bonds through a reverse-rebound mechanism // Nature. 2013. V. 499. P. 192–196. https://doi.org/10.1038/nature12284
- Qian W., Yan D., Chen Y., Wang T., Xiong F., Wei W., Lu Y., Sun W.-Y., Li J.J., Zhao J. A redox-neutral catechol synthesis // Nat. Commun. 2017. V. 8. ID 14227. https://doi.org/10.1038/ncomms14227
- Niwa S., Muthusamy E., Nair J., Raj A., Itoh N., Shoji H., Namba T., Mizukami F. A one-step conversion of benzene to phenol with a palladium membrane // Science. 2002. V. 295. № 5552. P. 105–107. https://doi.org/10.1126/science.1066527
- Shoji O., Yanagisawa S., Stanfield J.K., Suzuki K., Cong Z., Sugimoto H., Shiro Y., Watanabe Y. Direct hydroxylation of benzene to phenol by cytochrome P450BM3 triggered by amino acid derivatives // Angew. Chem. Int. Ed. 2017. V. 56. № 35. P. 10324–10329. https://doi.org/10.1002/anie.201703461
- Zheng Y.-W., Chen B., Ye P., Feng K., Wang W., Meng Q.-Y., Wu L.-Z., Tung C.-H. Photocatalytic hydrogen-evolution cross-couplings: benzene C–H amination and hydroxylation // J. Am. Chem. Soc. 2016. V. 138. № 32. P. 10080–10083. https://doi.org/10.1021/jacs.6b05498
- Meng L., Zhu X., Hensen E.J.M. Stable Fe/ZSM-5 nanosheet zeolite catalysts for the oxidation of benzene to phenol // ACS Catal. 2017. V. 7. № 4. P. 2709–2719. https://doi.org/10.1021/acscatal.6b03512
- Borah P., Ma X., Nguyen K.T., Zhao Y. A Vanadyl complex grafted to periodic mesoporous organosilica: a green catalyst for selective hydroxylation of benzene to phenol // Angew. Chem. Int. Ed. 2012. V. 51. № 31. P. 7756–7761. https://doi.org/10.1002/anie.201203275
- Xiong F., Lu L., Sun T.-Y., Wu Q., Yan D., Chen Y., Zhang X., Wei W., Lu Y., Sun W.-Y., Li J.J., Zhao J. A bioinspired and biocompatible ortho-sulfiliminyl phenol synthesis // Nat. Commun. 2017. V. 8. ID15912. https://doi.org/10.1038/ncomms15912
- Deng D., Chen X., Yu L., Wu X., Liu Q., Liu Y., Yang H., Tian H., Hu Y., Du P., Si R., Wang J., Cui X., Li H., Xiao J., Xu T., Deng J., Yang F., Duchesne P.N., Zhang P., Zhou J., Sun L., Li J., Pan X., Bao X. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature // Sci. Adv. 2015. V. 1. № 11. Art. ID e1500462. https://doi.org/10.1126/sciadv.1500462
- Kuhl N., Hopkinson M.N., Wencel-Delord J., Glorius F. Beyond directing groups: transition-metal-catalyzed C–H activation of simple arenes // Angew. Chem. Int. Ed. 2012. V. 51. № 41. P. 10236–10254. https://doi.org/10.1002/anie.201203269
- Yi H., Zhang G., Wang H., Huang Z., Wang J., Singh A.K., Lei A. Recent advances in radical C–H activation/radical cross-coupling // Chem. Res. 2017. V. 117. № 13. P. 9016–9085. https://doi.org/10.1021/acs.chemrev.6b00620
- Yamada M., Karlin K.D., Fukuzumi S. One-step selective hydroxylation of benzene to phenol with hydrogen peroxide catalyzed by copper complexes incorporated into mesoporous silica–alumina // Chem. Sci. 2016. V. 7. P. 2856–2863. https://doi.org/10.1039/C5SC04312C
- Tian K., Liu W.-J., Zhang S., Jiang H. One-pot synthesis of a carbon supported bimetallic Cu–Ag NPs catalyst for robust catalytic hydroxylation of benzene to phenol by fast pyrolysis of biomass waste // Green Chem. 2016. V. 18. P. 5643–5650. https://doi.org/10.1039/C6GC01231K
- Wang S.-S., Yang G.-Y. Recent advances in polyoxometalate-catalyzed reactions // Chem. Res. 2015. V. 15. № 11. P. 4893–4962. https://doi.org/10.1021/cr500390v
- Khatri P.K., Singh B., Jain S.L., Sain B., Sinha A.K. Cyclotriphosphazene grafted silica: a novel support for immobilizing the oxo-vanadium Schiff base moieties for hydroxylation of benzene // Chem. Commun. 2011. V. 47. P. 1610–1612. https://doi.org/10.1039/C0CC01941K
- Tanev P.T., Chibwe M., Pinnavaia T. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds // Nature. 1994. V. 368. P. 321–323. https://doi.org/10.1038/368321a0
- Vedernikov A.N. Direct functionalization of M–C (M = PtII, PdII) bonds using environmentally benign oxidants, O2 and H2O2 // Acc. Chem. Res. 2012. V. 45. № 6. P. 803–813. https://doi.org/10.1021/ar200191k
- Wen G., Wu Sh., Li B., Dai C., Su D.S. Active sites and mechanisms for direct oxidation of benzene to phenol over carbon catalysts // Angew. Chem. Int. Ed. 2015. V. 54. № 13. P. 4105–4109. https://doi.org/10.1002/anie.201410093
- Morimoto Y., Bunno S., Fujieda N., Sugimoto H., Itoh S. Direct hydroxylation of benzene to phenol using hydrogen peroxide catalyzed by nickel complexes supported by pyridylalkylamine ligands // J. Am. Chem. Soc. 2015. V. 137. № 18. P. 5867–5870. https://doi.org/10.1021/jacs.5b01814
- Hartman M., Machoke A.G., Schwieger W. Catalytic test reactions for the evaluation of hierarchical zeolites // Chem. Soc. Rev. 2016. V. 45. P. 3313–3330. https://doi.org/10.1039/C5CS00935A
- Kamata K., Yamaura T., Mizuno N. Chemo- and regioselective direct hydroxylation of arenes with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate // Angew. Chem. Int. Ed. 2012. V. 51. № 29. P. 7275–7278. https://doi.org/10.1002/anie.201201605
- Leng Y., Wang J., Zhu D., Shen L., Zhao P., Zhang M. Heteropolyanion-based ionic hybrid solid: A green bulk-type catalyst for hydroxylation of benzene with hydrogen peroxide // Chem. Eng. J. 2011. V. 173. № 2. P. 620–626. https://doi.org/10.1016/j.cej.2011.08.013
- Li C., Zheng P., Li J., Zhang H., Cui Y., Shao Q., Ji X., Zhang J., Zhao P., Xu Y. The dual roles of oxodiperoxovanadate both as a nucleophile and an oxidant in the green oxidation of benzyl alcohols or benzyl halides to aldehydes and ketones // Angew. Chem. Int. Ed. 2003. V. 42. № 41. P. 5063–5066. https://doi.org/10.1002/anie.200351902
- Mimoun H., Saussine L., Daire E., Postel M., Fischer J., Weiss R. Vanadium(V) peroxy complexes. New versatile biomimetic reagents for epoxidation of olefins and hydroxylation of alkanes and aromatic hydrocarbons // J. Am. Chem. Soc. 1983. V. 105. № 10. P. 3101–3110. https://doi.org/10.1021/ja00348a025
- Zhou Y., Ma Z., Tang J. Yan N., Du Y., Xi S. Wang K., Zhang W., Wen H., Wang J. Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM-22 zeolite triggered non-radical mechanism // Nat. Commun. 2018. V. 9. ID 2931. https://doi.org/10.1038/s41467-018-05351-w
- Zhang W., Xie J., Hou W., Liu Y., Zhou Y., Wang J. One-pot template-free synthesis of Cu–MOR zeolite toward efficient catalyst support for aerobic oxidation of 5-hydroxymethylfurfural under ambient pressure // ACS Appl. Mater. Interfaces. 2016. V. 8. № 36. P. 23122–23132. https://doi.org/10.1021/acsami.6b07675
- Shi J., Wang Y., Wang W., Tang Y., Xie Z. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes // Chem. Soc. Rev. 2015. V. 44. P. 8877–8903. https://doi.org/10.1039/C5CS00626K
- Sun Q., He H., Gao W.-Y., Aguila B., Woitas L., Dai Z., Li J., Chen Y.-S., Xiao F.-S., Ma S. Imparting amphiphobicity on single-crystalline porous materials // Nat. Commun. 2016. V. 7. ID 13300. https://doi.org/10.1038/ncomms13300
- Wang L., Wang G., Zhang J., Bian C., Meng X., Xiao F.-S. Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst // Nat. Commun. 2017. V. 8. ID 15240. https://doi.org/10.1038/ncomms15240
- (а) (б)
Қосымша файлдар
