Development and validation of an immunochromatographic test system for the determination of okadaic acid in seafood
- 作者: Singov E.K.1, Morenkov O.S.2, Sipin S.V.1, Vrublevskaya V.V.2
-
隶属关系:
- Federal State Unitary Enterprise “Scientific Center “Signal”
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”
- 期: 卷 80, 编号 5 (2025)
- 页面: 489-500
- 栏目: ORIGINAL ARTICLES
- ##submission.dateSubmitted##: 20.06.2025
- ##submission.dateAccepted##: 20.06.2025
- URL: https://vestnik.nvsu.ru/0044-4502/article/view/685441
- DOI: https://doi.org/10.31857/S0044450225050055
- EDN: https://elibrary.ru/athjfn
- ID: 685441
如何引用文章
详细
Okadaic acid (OA) and its derivatives, dinophysistoxins, belong to the group of diarrhoeal toxins (DSP-toxins) produced by toxin-producing dinoflagellates. When algae are ingested by molluscs, DSP-toxins concentrate in the fatty tissue of the animals and can lead to acute poisoning in humans if consumed. We have developed a simple, sensitive and specific test system for the detection and semi-quantitative rapid determination of OA and its derivatives in shellfish, based on a direct competitive immunochromatographic assay. The test strips have three immunoreagent binding lines – test line, control line and internal comparison line, the staining intensity of which does not depend on the concentration of OA in the solution and is comparable to the staining intensity of the test line. When DSP toxins are present in the sample, the staining intensity of the test line decreases relative to the reference line, which allows detection of the presence of toxins in the samples. Sample preparation includes extraction of mollusk tissue homogenates with methanol followed by dilution of the extract with the solution for analysis. The test strips are manufactured in a “dip-stick” format and the analysis procedure involves dipping part of the test strip into the sample for a few seconds with results processed after 30 min. The total duration of the analysis including sample preparation is about 1 h. The test system allows reliable detection and semi-quantitative determination of OA in various shellfish (oysters, mussels, vongole, Buccinidae, scallops) with the toxin content not more than 40 ng/g (visual method of results registration) and not more than 10 ng/g (instrumental method of results registration), which is significantly lower than the maximum permissible concentration for OA established by the World Health Organisation and Rospotrebnadzor (160 ng/g). In addition to OA, the test system is able to detect its derivatives, dinophysistoxin-1 and dinophysistoxin-2, in molluscs. The developed immunochromatographic test system can be used for monitoring the content of OA-group toxins in molluscs inhabiting Russia.
全文:

作者简介
E. Singov
Federal State Unitary Enterprise “Scientific Center “Signal”
Email: v_vrublevskaya@mail.ru
俄罗斯联邦, Moscow
O. Morenkov
Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”
Email: v_vrublevskaya@mail.ru
俄罗斯联邦, Pushchino
S. Sipin
Federal State Unitary Enterprise “Scientific Center “Signal”
Email: v_vrublevskaya@mail.ru
俄罗斯联邦, Moscow
V. Vrublevskaya
Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”
编辑信件的主要联系方式.
Email: v_vrublevskaya@mail.ru
俄罗斯联邦, Pushchino
参考
- Wright J.L.C. Dealing with seafood toxins: Present approaches and future options // Food Res. Int. 1995. V. 28. № 4. Р. 347. https://doi.org/10.1016/0963-9969(95)00001-3
- Reguera B., Riobó P., Rodríguez F., Díaz P.A., Pizarro G., Paz B. et al. Dinophysis toxins: Causative organisms, distribution and fate in shellfish // Mar. Drugs. 2014. V. 12. P. 394. https://doi.org/10.3390/md12010394
- Blanco J. Accumulation of dinophysis toxins in bivalve molluscs // Toxins. 2018. V. 10. № 11. P. 453. https://doi.org/10.3390/toxins10110453
- Hu T., Curtis J.M., Walter J.A., McLachlan J.L., Wright J.L.C. Two new water-soluble DSP toxin derivatives from the dinofagellate Prorocentrum maculosum: Possible storage and excretion products // Tetrahedron Lett. 1995. V. 36. P. 9273. https://doi.org/10.1016/0040-4039(95)02010-M
- Domínguez H.J., Paz B., Daranas A.H., Norte M., Franco J.M., Fernández J.J. Dinoflagellate polyether within the yessotoxin, pectenotoxin and okadaic acid toxin groups. Characterization, analysis and human health implications // Toxicon. 2010. V. 56. P. 191. https://doi.org/10.1016/j.toxicon.2009.11.005
- Hallegraeff G.M. Harmful algal blooms: A global overview / Manual on Harmful Marine Microalgae / Ed. Hallegraeff G.M. IOC Manuals and Guides. UNESCO, 1995. № 33. P. 1.
- Takai A., Murata M., Torigoe K., Isobe M., Mieskes G., Yasumoto T. Inhibitory effect of okadaic acid derivatives on protein phosphatases. A study on structure-affinity relationship // Biochem. J. 1992. V. 284 (Pt 2). P. 539. https://doi.org/10.1042/bj2840539
- European Commission Regulation (EC) No. 2074/2005 under regulations 450 (EC) nos. 451 853/2004 and 854/2004 // Off. J. Eur. Comm. 2005. V. 358. P. 27. http://data.europa.eu/eli/reg/2005/2074/oj
- Codex Alimentarius Commission. Standard for live and raw bivalve molluscs. Codex standard 292-2008. 2008. P. 9.
- European Food Safety Authority (EFSA). Marine biotoxins in shellfish – Summary on regulated marine biotoxins. Scientific opinion of the panel on contaminants in the food chain in feed and food // EFSA J. 2009. V. 1306. P. 1. https://doi.org/10.2903/j.efsa.2009.1306
- Санитарно-эпидемиологические правила и нормативы (СанПиН 2.3.2.2401-08) от 16.07.2008.
- Rodriguez I., Vieytes M.R., Alfonso A. Analytical challenges for regulated marine toxins. Detection methods // Curr. Opin. Food Sci. 2017. V. 18. P. 29. https://doi.org/10.1016/j.cofs.2017.10.008
- Laycock M.V., Jellett J.F., Easy D.H., Donovan M.A. First report of a new rapid assay for diarrhetic shellfish poisoning toxins // Harmful Algae. 2006. V. 5. P. 74. https://doi.org/10.1016/j.hal.2005.05.006
- Lu S.-Y., Lin C., Li Y.-S., Zhou Y., Meng X.-M., Yu S.-Y. et al. A screening lateral flow immunochromatographic assay for on-site detection of okadaic acid in shellfish products // Anal. Biochem. 2012. V. 422. P. 59. https://doi.org/10.1016/j.ab.2011.12.039
- Hu L., Liu J., Wang Q., Zhang Y., Jia R., Cai C. et al. Development of an immunochromatographic strip test for the rapid detection of okadaic acid in shellfish sample // J. Appl. Phycol. 2013. V. 25. P. 1091. https://doi.org/10.1007/s10811-012-9949-3
- Jawaid W., Meneely J.P., Campbell K., Melville K., Holmes S.J., Rice J., Elliott C.T. Development and validation of a lateral flow immunoassay for the rapid screening of okadaic acid and all dinophysis toxins from shellfish extracts // J. Agric. Food. Chem. 2015. V. 63. № 38. P. 8574. https://doi.org/10.1021/acs.jafc.5b01254
- Wang R., Zeng L., Yang H., Zhong Y., Wang J., Ling S. et al. Detection of okadaic acid (OA) using ELISA and colloidal gold immunoassay based on monoclonal antibody // J. Hazard. Mater. 2017. V. 339. P. 154. https://doi.org/10.1016/j.jhazmat.2017.06.030
- Mills C., Dillon M.J., Kulabhusan P.K., Senovilla-Herrero D., Campbell K. Multiplex lateral flow assay and the sample preparation method for the simultaneous detection of three marine toxins // Environ. Sci. Technol. 2022. V. 56. № 17. P. 12210. https://doi.org/10.1021/acs.est.2c02339
- Hendrickson O.D., Zvereva E.A., Panferov V.G., Solopova O.N., Zherdev A.V., Sveshnikov P.G., Dzantiev B.B. Application of Au@Pt nanozyme as enhancing label for the sensitive lateral flow immunoassay of okadaic acid // Biosensors. 2022. V. 12. Article 1137. https://doi.org/10.3390/bios12121137
- Hendrickson O.D., Zvereva E.A., Zherdev A.V., Dzantiev B.B. Cascade-enhanced lateral flow immunoassay for sensitive detection of okadaic acid in seawater, fish, and seafood // Foods. 2022. V. 11. Article 1691. https://doi.org/10.3390/foods11121691
- Hendrickson O.D., Zvereva E.A., Solopova O.N., Zherdev A.V., Sveshnikov P.G., Eremin S.A., Dzantiev B.B. Double immunochromatographic test system for sensitive detection of phycotoxins domoic acid and okadaic acid in seawater and seafood // Micromachines. 2022. V. 13. № 9. Article 1506. https://doi.org/10.3390/mi13091506
- Zvereva E.A., Hendrickson O.D., Solopova O.N., Zherdev A.V., Sveshnikov P.G., Dzantiev B.B. Triple immunochromatographic test system for detection of priority aquatic toxins in water and fish // Anal. Bioanal. Chem. 2022. V. 414. P. 7553. https://doi.org/10.1007/s00216-022-04298-8
- Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold solution // Nat. Phys. Sci. 1973. V. 241. P. 20.
- Matsuura S., Kita H., Takagaki Y. Specificity of mouse monoclonal anti-okadaic acid antibodies to okadaic acid and its analogs among diarrhetic shellfish toxins // Biosci. Biotechnol. Biochem. 1994. V. 58. P. 1471. https://doi.org/10.1271/bbb.58.1471
- Mountfort D.O., Suzuki T., Truman P. Protein phosphatase inhibition assay adapted for determination of total DSP in contaminated mussels // Toxicon. 2001. V. 39. P. 383. https://doi.org/10.1016/S0041-0101(00)00144-6.
- Louppis A.P., Badeka A.V., Katikou P., Paleologos E.K., Kontominas M.G. Determination of okadaic acid, dinophysistoxin-1 and related esters in Greek mussels using HPLC with fluorometric detection, LC-MS/MS and mouse bioassay // Toxicon. 2010. V. 55. P. 724. https://doi.org/10.1016/j.toxicon.2009.10.026
- Vdovenko M.M., Hung C-T., Sakharov I.Y., Yu F-Y. Determination of okadaic acid in shellfish by using a novel chemiluminescent enzyme-linked immunosorbent assay method // Talanta. 2013. V. 116. P. 343. https://doi.org/10.1016/j.talanta.2013.05.057
补充文件
