SYNTHESIS, MICROSTRUCTURE AND PROPERTIES OF CERAMICS (K0.5Na0.5) NBO3–SrZrO3 DOPED WITH LITHIUM FOTORIDE
- Authors: Kaleva G.M.1, Politova E.D.1, Mosunov A.V.2, Sadovskaya N.V.3
-
Affiliations:
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Lomonosov Moscow State University
- Federal State Budgetary Institution “National Research Center “Kurchatov Institute”
- Issue: Vol 99, No 7 (2025)
- Pages: 1056-1062
- Section: STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
- Submitted: 17.10.2025
- Published: 15.07.2025
- URL: https://vestnik.nvsu.ru/0044-4537/article/view/693647
- DOI: https://doi.org/10.7868/S3034553725070112
- ID: 693647
Cite item
Abstract
Single-phase ceramic samples of new compositions (1-x)(K0.5Na0.5) NbO3 – xSrZrO3 (x = 0–0.15), modified by the addition of 2 wt. % lithium fluoride LiF, were obtained by solid-phase synthesis and their crystal structure, microstructure, dielectric and nonlinear optical properties were studied. The formation of a phase with perovskite structure with pseudocubic unit cell in the modified samples was found. The formation of a finer-grained microstructure with increasing SrZrO3 content has been revealed. Segnetoelectric phase transitions have been confirmed by dielectric spectroscopy. Decrease in the temperature of phase transitions and weakening of nonlinear optical properties as the content of strontium zirconate in the samples increases were found.
About the authors
G. M. Kaleva
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: galina_kaleva@mail.ru
119991, Москва, Россия
E. D. Politova
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences119991, Москва, Россия
A. V. Mosunov
Lomonosov Moscow State University119991, Москва, Россия
N. V. Sadovskaya
Federal State Budgetary Institution “National Research Center “Kurchatov Institute”119333, Москва, Россия
References
- Valant M. // Progr. Mater. Science. 2012. V. 57. P. 980. https://doi.org/:10.1016/j.pmatsci.2012.02.001
- Bai Y., Han X., Ding K., Qiao L. // Energy Technol. 2017. V. 5. P. 703. https://doi.org/10.1002/ente.201600456
- Ozbolt M., Kitanovski A., Tusek J., Poredos A. // Int. J. Refrig. 2014. V. 40. P. 174. https://doi.org/10.1016/j.ijrefrig.2013.11.007
- Lu S.-G., Zhang Q. // Adv. Mater. 2009. V. 21. P. 1983. https://doi.org/10.1002/adma.200802902
- Axelsson A.-K., Goupil F. Le, Valant M., Alford N.M. // Acta Mater. 2017. V. 124. P. 120. https://doi.org/10.1016/j.actamat.2016.11.001
- Weyland F., Acosta M., Koruza J. et al. // Adv. Funct. Mater. 2016. V. 26. P. 7326. https://doi.org/10.1002/adfm.201602368
- Mischenko A.S., Zhang Q., Scott J.F. et al. // Science. 2006. V. 311. P. 1270. https://doi.org/10.1126/science.1123811
- Suchaneck G., Gerlach G. // Mater. Today: Proceed. 2016. V. 3. P. 622. https://doi.org/10.1016/j.matpr.2016.01.100
- Grünebohm A., Ma Y.B., Marathe M. et al. // Energy Technol. 2018. V. 6. P. 1491. https://doi.org/10.1002/ente.201800166
- Samantaray K.S., Amin R., Rini E. et al. // J. Alloys Compd. 2022. V. 903. Art. № 163837. https://doi.org/10.1016/j.jallcom.2022.163837
- Luo L., Jiang X., Zhang Y., Li K. // J. Eur. Ceram. Soc. 2017. V. 37. P. 2803. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.02.047
- Srikanth K., Vaish R. // J. Eur. Ceram. Soc. 2017. V. 37. P. 3927. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.04.058
- Kimmel A., Gindele O., Duffy D., Cohen R. // Appl. Phys. Lett. 2019. V. 115. Art. № 023902. https://doi.org/10.1063/1.5096592
- Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment // Offic. J. Europ. Union L 37. 2003. V. 46. P. 19–23. http://data.europa.eu/eli/dir/2002/95/oj
- Yang Z., Du H., Jin L. and Poelman D. // J. Mater. Chem. A. 2021. V. 9. P. 18026. https://doi.org/10.1039/d1ta04504k
- Wu J. // J. Appl. Phys. 2020. V. 127 Art. № 190901. https://doi.org/10.1063/5.0006261
- Panda P.K. // J. Mater. Sci. 2009. V. 44. P. 5049. https://doi.org/10.1007/s10853-009-3643-0
- Rödel J., Jo W., Seifert T.P. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1153. https://doi.org/10.1111/j.1551-2916.2009.03061.x
- Bernard J., Bencan A., Rojac T. et al. // J. Am. Ceram. Soc. 2008. V. 91. P. 2409. https://doi.org/10.1111/j.1551-2916.2008.02447.x
- Kumar R., Singh S. // J. Alloys Compd. 2017. V. 723. P. 589. https://dx.doi.org/10.1016/j.jallcom.2017.06.252
- Liu Z., Fan H., Lei S. et al. // J. Eur. Ceram. Soc. 2017. V. 37. P. 115. https://dx.doi.org/10.1016/j.jeurceramsoc.2016.07.024
- Kumar R., Singh S. // J. Alloys Compd. 2018. V. 764. P. 289. https://doi.org/10.1016/j.jallcom.2018.06.083
- Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. Adv. Dielect. 2018. V. 8. P. 1850004. https://doi.org/10.1142/S2010135X18500042
- Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45. https://doi.org/10.1080/00150193.2019.1569984.
- Kurtz S.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. P. 3798. https://doi.org/10.1109/JQE.1968.1075108.
Supplementary files
