INFLUENCE OF CARRIER TEXTURAL CHARACTERISTICS ON THE ACTIVITY OF CHROMOXIDE CATALYSTS IN THE PROPANE DEHYDROGENATION REACTION IN THE PRESENCE OF CO2

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Two series of catalysts of CrOx-SBA-15 composition obtained by different methods – co-precipitation with a carrier and impregnation by moisture impregnation, varying the chromium content in the catalyst from 3 to 7 wt % – were synthesized and investigated in this work. The obtained materials were investigated by nitrogen adsorption, UV–VIS SDS and IR SDS methods using CD3CN as a test molecule. On 3 wt % Cr-SiO2catalyst prepared by co-precipitation, a propylene selectivity of 78% was achieved with a propane conversion of 14% at 600°C.

Sobre autores

M. Tedeeva

Lomonosov Moscow State University, Department of Chemistry

Email: maritedeeva@mail.ru
Moscow, Russia

M. Mashkin

Lomonosov Moscow State University, Department of Chemistry

Moscow, Russia

A. Andresyuk

Lomonosov Moscow State University, Department of Chemistry

Moscow, Russia

P. Pribytkov

Lomonosov Moscow State University, Department of Chemistry

Moscow, Russia

A. Medvedev

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Moscow, Russia

O. Tkachenko

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Moscow, Russia

G. Kapustin

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Moscow, Russia

S. Dunaev

Lomonosov Moscow State University, Department of Chemistry

Moscow, Russia

A. Kustov

Lomonosov Moscow State University, Department of Chemistry

Moscow, Russia

Bibliografia

  1. Ansari M.B., Park S.-E. // Energy Environ. Sci. 2012. V. 5. P. 9419.
  2. Wang S., Zhu Z.H. // Energy & Fuels. 2004. V. 18. № 4. P. 1126.
  3. Baroudi H.A., Awoyomi A., Patchigolla K., et al. // Applied Energy. 2021. V. 287. P. 116510.
  4. Medvedev A.A., Kustov A.L., Beldova D.A., et al. // Int. J. Mol. Sci. 2023. V. 24. № 2. P. 1279.
  5. Medvedev A.A., Beldova D.A., Kustov L.M., et al. // Clean Technol. 2024. V. 6. № 4. Р. 1579.
  6. Evdokimenko N., Vikanova K., Bazlov A., et al. // Applied Catalysis A: General. 2024. V. 688. P. 119998.
  7. Bogdan T.V., Koklin A.E., Mishanin I.I., et al. // ChemPlusChem. 2024. P. e202400327.
  8. Tsyganok A.I., Tsunoda T., Hamakawa S., et al. // Journal of Catalysis. 2003. Т. 213. № 2. P. 191.
  9. Ivashchenko A.N., Tedeeva M.A., Kartavova K.E., et al. // Russ. J. Phys. Chem. A. 2021. V. 95. № 12. P. 2417.
  10. Mishanin I.I., Bogdan T.V., Koklin A.E., Bogdan V.I. // Chem. Eng. J. Elsevier B. 2022. V. 446. № P3. P. 137184.
  11. Cheng Y., Zhou L., Xu J. et al. // Microporous and Mesoporous Materials. 2016. V. 234. P. 370.
  12. Tedeeva M.A., Kustov A.L., Pribytkov P.V., et al. // Fuel. 2022. V. 313. P. 122698.
  13. Mashkin M.Y., Tedeeva M.A., Fedorova A.A., et al. // J. Chem. Technol. Biotechnol. John Wiley & Sons, Ltd. 2023. V. 98. № 5. P. 1247.
  14. Chernyak S.A., Kustov A.L., Stolbov D.N., et al. // Applied Surface Science. 2022. V. 578. P. 152099.
  15. Salaeva A.A., Salaev M.A., Mamontov G.V. // Chem. Eng. Sci. 2020. V. 215. P. 115462.
  16. Atanga M.A., Rezaei F., Jawad A., et al. // Applied Catalysis B: Environmental. 2018. V. 220. P. 429.
  17. Prasad P.S.S., Bae J.W., Jun K.-W., Lee K.-W. // Catal. Surv. Asia. 2008. V. 12. P. 170.
  18. Kim C., Yoo C.-J., Oh H.-S. et al. // Journal of CO2 Utilization. 2022. V. 65. P. 102239.
  19. Bathena T., Phung T., Murugesan V. // Journal of CO2 Utilization. 2024. V. 84. P. 102848.
  20. Igonina M., Tedeeva M., Kalmykov K. et al. // Catalysts. 2023. V. 13. № 906. P. 1.
  21. Michorczyk P., Ogonowski J., Zenczak K. // J. Mol. Cat. A: Chem. 2011. V. 349. P. 1.
  22. Cheng Y., Zhou L., Xu J. et al. // Microporous and Mesoporous Materials. 2016. V. 234. P. 370.
  23. Gaspar A., Brito J., Dieguez L. // J. Mol. Catal. A: Chem. 2003. V. 203. P. 251.
  24. Weckhuysen B., Verberckmoes A., De Baets A., Schoonheydt R. // Journal of Catalysis. 1997. V. 166. № 2. P. 160.
  25. Michorczyk P., Ogonowski J., Kuśtrowski P., Chmielarz L. // Applied Catalysis A: General. 2008. V. 349. № 1–2. P. 62.
  26. Ramesh Y., Thirumala Bai P., Hari Babu B. et al. // Appl. Petrochem. Res. 2014. V. 4. P. 247.
  27. Тедеева М.А., Кустов А.Л., Прибытков П.В. и др. // Журн. Физ. химии. 2018. Т. 92. № 12. С. 1879.
  28. Kazansky V.B., Serikh A.I. // PCCP. 2004. № 6. С. 3760.
  29. Mehdad A., Gould N.S., Xu B., Lobo R.L. // Catalysis Science & Technology. 2018. № 8. P. 358.
  30. Purcell K.F., Grado R.S. // J. Am. Chem. Soc. 1966. № 88. Р. 919.
  31. Lin L., Zhang X., He N., et al. // Catalysts. 2019. № 9. Р. 100.
  32. Medin A.S., Borovkov V. Yu., Kazansky V.B. et al. // Zeolites. 1990. № 10. Р. 668.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025