Synthesis of nano-sized SNO₂ by direct chemical precipitation using tin(II) chloride

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The process of synthesizing nano-sized SNO₂ by direct chemical precipitation using tin(II) chloride and hydrogen peroxide has been investigated. The thermal behavior of the obtained powders was studied using simultaneous thermal analysis (TGA/DSC). The impact of H₂O₂ concentration in the reaction system on the set of functional groups in the materials was demonstrated using infrared spectroscopy, while X-ray diffraction analysis (XRD) was utilized to examine the crystalline structure of the powders, including the thermal transformation of tin(II) oxyhydroxide. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to show the effect of the reaction system composition on the size of primary particles and the agglomerates formed. In particular, it was established that with an increase of H₂O₂ concentration, both the size of the primary particles and the agglomerates decrease. The roughness of the films formed from the obtained nanopowders was studied using atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) was used to construct surface potential distribution maps for the obtained materials and to evaluate the electron work function from their surface.

全文:

受限制的访问

作者简介

N. Fisenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: fisenkonk@yandex.ru
俄罗斯联邦, Leninsky pr., 31, Moscow, 119991

I. Solomatov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University “Higher School of Economics”

Email: fisenkonk@yandex.ru
俄罗斯联邦, Leninsky pr., 31, Moscow, 119991; st. Myasnitskaya, 21, Moscow, 101000

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: fisenkonk@yandex.ru
俄罗斯联邦, Leninsky pr., 31, Moscow, 119991

Ph. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: fisenkonk@yandex.ru
俄罗斯联邦, Leninsky pr., 31, Moscow, 119991

T. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: fisenkonk@yandex.ru
俄罗斯联邦, Leninsky pr., 31, Moscow, 119991

E. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: fisenkonk@yandex.ru
俄罗斯联邦, Leninsky pr., 31, Moscow, 119991

参考

  1. White M.E., Bierwagen O., Tsai M.Y. et al. // J. Appl. Phys. 2009. V. 106. № 9. P. 93704. https://doi.org/10.1063/1.3254241
  2. Li Z., Graziosi P., Neophytou N. // Crystals (Basel). 2022. V. 12. № 11. P. 1591. https://doi.org/10.3390/cryst12111591
  3. Korotkov R.Y., Farran A.J.E., Culp T. et al. // J. Appl. Phys. 2004. V. 96. № 11. P. 6445. https://doi.org/10.1063/1.1805722
  4. Mun H., Yang H., Park J. et al. // APL Mater. 2015. V. 3. № 7. P. 76107. https://doi.org/10.1063/1.4927470
  5. Göpel W., Schierbaum K.D. // Sens. Actuators, B: Chem. 1995. V. 26. № 1–3. P. 1. https://doi.org/10.1016/0925-4005(94)01546-T
  6. Chopra K.L., Major S., Pandya D.K. // Thin Solid Films. 1983. V. 102. № 1. P. 1. https://doi.org/10.1016/0040-6090(83)90256-0
  7. Zhou D., Chekannikov A.A., Semenenko D.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1488. https://doi.org/10.1134/S0036023622090029
  8. Bhattacharjee A., Ahmaruzzaman M., Sinha T. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2015. V. 136. P. 751. https://doi.org/10.1016/j.saa.2014.09.092
  9. Liu A., Zhu M., Dai B. // Appl. Catal., A: Gen. 2019. V. 583. P. 117134. https://doi.org/10.1016/j.apcata.2019.117134
  10. Liu C., Xian H., Jiang Z. et al. // Appl. Catal., B. 2015. V. 176–177. P. 542. https://doi.org/10.1016/j.apcatb.2015.04.042
  11. Tonezzer M. // Chemosensors. 2020. V. 9. № 1. P. 2. https://doi.org/10.3390/chemosensors9010002
  12. Zito C.A., Perfecto T.M., Volanti D.P. // Adv. Mater Interfaces. 2017. V. 4. № 22. P. 1700847. https://doi.org/10.1002/admi.201700847
  13. Fisenko N.A., Solomatov I.A., Simonenko N.P. et al. // Sensors. 2022. V. 22. № 24. P. 9800. https://doi.org/10.3390/s22249800
  14. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601703
  15. Krašovec U.O., Orel B., Hočevar S. et al. // J. Electrochem Soc. 1997. V. 144. № 10. P. 3398. https://doi.org/10.1149/1.1838025
  16. Olivi P., Pereira E.C., Longo E. et al. // J. Electrochem Soc. 1993. V. 140. № 5. P. L81. https://doi.org/10.1149/1.2221591
  17. Orel B., Lavrenčič‐Štangar U., Kalcher K. // J. Electrochem Soc. 1994. V. 141. № 9. P. L127. https://doi.org/10.1149/1.2055177
  18. Köse H., Karaal Ş., Aydin A.O. et al. // Mater. Sci. Semicond. Process. 2015. V. 38. P. 404. https://doi.org/10.1016/j.mssp.2015.03.028
  19. Gu F., Wang S.F., Lü M.K. et al. // J. Phys. Chem. B. 2004. V. 108. № 24. P. 8119. https://doi.org/10.1021/jp036741e
  20. Aziz M., Saber Abbas S., Wan Baharom W.R. // Mater. Lett. 2013. V. 91. P. 31. https://doi.org/10.1016/j.matlet.2012.09.079
  21. Kang S.-Z., Yang Y., Mu J. // Colloids Surf., A: Physicochem. Eng. Asp. 2007. V. 298. № 3. P. 280. https://doi.org/10.1016/j.colsurfa.2006.11.008
  22. Lupan O., Chow L., Chai G. et al. // Mater. Sci. Eng., B. 2009. V. 157. № 1–3. P. 101. https://doi.org/10.1016/j.mseb.2008.12.035
  23. Chiu H.-C., Yeh C.-S. // J. Phys. Chem. C. 2007. V. 111. № 20. P. 7256. https://doi.org/10.1021/jp0688355
  24. Das S., Kar S., Chaudhuri S. // J. Appl. Phys. 2006. V. 99. № 11. P. 114303. https://doi.org/10.1063/1.2200449
  25. Liu Y., Koep E., Liu M. // Chem. Mater. 2005. V. 17. № 15. P. 3997. https://doi.org/10.1021/cm050451o
  26. Lu Y.M., Jiang J., Becker M. et al. // Vacuum. 2015. V. 122. P. 347. https://doi.org/10.1016/j.vacuum.2015.03.018
  27. Kim K.H., Park C.G. // J. Electrochem. Soc. 1991. V. 138. № 8. P. 2408. https://doi.org/10.1149/1.2085986
  28. Drevet R., Legros C., Bérardan D. et al. // Surf. Coat. Technol. 2015. V. 271. P. 234. https://doi.org/10.1016/j.surfcoat.2014.12.008
  29. Acarbaş Ö., Suvacı E., Doğan A. // Ceram. Int. 2007. V. 33. № 4. P. 537. https://doi.org/10.1016/j.ceramint.2005.10.024
  30. Ibarguen C.A., Mosquera A., Parra R. et al. // Mater. Chem. Phys. 2007. V. 101. № 2-3. P. 433. https://doi.org/10.1016/j.matchemphys.2006.08.003
  31. Jońca J., Ryzhikov A., Kahn M.L. et al. // Chem. A Eur. J. 2016. V. 22. № 29. P. 10127. https://doi.org/10.1002/chem.201600650
  32. Nejati K. // Cryst. Res. Technol. 2012. V. 47. № 5. P. 567. https://doi.org/10.1002/crat.201100633
  33. Kozlova L.O., Ioni Yu.V., Son A.G. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1744. https://doi.org/10.1134/S0036023623602374
  34. Kozlova L.O., Voroshilov I.L., Ioni Yu.V. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601077
  35. Liu S., Xie M., Li Y. et al. // Chem. Lett. 2009. V. 38. № 6. P. 614. https://doi.org/10.1246/cl.2009.614
  36. Rajan R., Vizhi R.E. // J. Supercond. Nov. Magn. 2017. V. 30. № 11. P. 3199. https://doi.org/10.1007/s10948-017-4118-1
  37. Campo C.M., Rodríguez J.E., Ramírez A.E. // Heliyon. 2016. V. 2. № 5. P. E00112. https://doi.org/10.1016/j.heliyon.2016.e00112
  38. Shahanshahi S.Z., Mosivand S. // Appl. Phys. A. 2019. V. 125. № 9. P. 652. https://doi.org/10.1007/s00339-019-2949-2
  39. Chandane W., Gajare S., Kagne R. et al. // Res. Chem. Intermed. 2022. V. 48. № 4. P. 1439. https://doi.org/10.1007/s11164-022-04670-4
  40. Wang Q., Peng C., Du L. et al. // Adv. Mater. Interfaces. 2020. V. 7. № 4. https://doi.org/10.1002/admi.201901866
  41. Gubbala S., Russell H.B., Shah H. et al. // Energy Environ Sci. 2009. V. 2. № 12. P. 1302. https://doi.org/10.1039/b910174h
  42. Fang X., Yan J., Hu L. et al. // Adv. Funct. Mater. 2012. V. 22. № 8. P. 1613. https://doi.org/10.1002/adfm.201102196

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. TGA (a) and DSC (b) curves of powders obtained at different concentrations of hydrogen peroxide in the reaction system.

下载 (253KB)
3. Fig. 2. IR spectra of the obtained powders: 1 – sample 1, 2 – sample 2, 3 – sample 3, 4 – sample 1 after additional heat treatment at 300°C for 3 hours; the asterisk indicates the absorption bands from vaseline oil.

下载 (153KB)
4. Fig. 3. X-ray diffraction patterns of the obtained powders: 1 – sample 1, 2 – sample 2, 3 – sample 3, 4 – sample 1 after additional heat treatment at 300°C for 3 hours.

下载 (257KB)
5. Fig. 4. Microstructure of the obtained powders: a – sample 1, b – sample 2, c – sample 3; d – distribution of agglomerates by size according to SEM data.

下载 (844KB)
6. Fig. 5. Microstructure of the obtained powders: a – sample 1, b – sample 2, c – sample 3; d – particle size distribution according to TEM data.

下载 (1MB)
7. Fig. 6. Relief of films obtained using powders 1 (a), 2 (c) and 3 (d) and the corresponding surface potential distribution maps (b – 1, d – 2, e – 3) according to AFM and KZSM data.

下载 (810KB)

版权所有 © Russian Academy of Sciences, 2025