Kinetic Model of Erythrocyte Hemolysis Under the Action of an Azo Generator of Peroxide Radicals
- Authors: Psikha B.L.1, Sokolova E.M.1, Dubenskaya N.A.2, Neshev N.I.1
-
Affiliations:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: Vol 44, No 6 (2025)
- Pages: 55-66
- Section: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://vestnik.nvsu.ru/0207-401X/article/view/686514
- DOI: https://doi.org/10.31857/S0207401X25060049
- ID: 686514
Cite item
Abstract
A kinetic model of hemolysis of erythrocyte suspension under the action of the azo generator of peroxide radicals AAPH has been developed. The model is based on the assumption of cell hemolysis as a macroscopic consequence of the process of lipid peroxidation developing in the lipid region of the membrane, that lead to the accumulation of a certain molecular product, the critical concentration of which causes hemolysis. The kinetic component of the model is implemented as a solution to the direct problem of chemical kinetics with an obtainment of kinetic curves of formation of the supposed hemolysis factors. Due to the heterogeneity of the erythrocyte population, their morphological and other characteristics, including the response to the effect of the hemolytic factor, are statistically distributed. In this regard, the Gaussian normal distribution function was used as a mathematical basis for an accurate solution to the problem of the relationship between the degree of hemolysis and the concentration of the acting factor. This made it possible to describe the results of the hemolytic experiment with a good approximation.
Full Text

About the authors
B. L. Psikha
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: psi@icp.ac.ru
Russian Federation, Chernogolovka
E. M. Sokolova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: psi@icp.ac.ru
Russian Federation, Chernogolovka
N. A. Dubenskaya
Lomonosov Moscow State University
Email: psi@icp.ac.ru
Russian Federation, Moscow
N. I. Neshev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: psi@icp.ac.ru
Russian Federation, Chernogolovka
References
- Sæbø I.P., Bjørås M., Franzyk H. et al. // Intern. J. Mol. Sci. 2023. V. 24(3). Article 2914. https://doi.org/10.3390/ijms24032914
- Shevchenko O.G. // Bioorg. Khimiya. 2024. V. 50. № 6. P. 720. https://doi.org/10.31857/s0132342324060026
- Niki E. // Methods Enzymol. 1990. V. 186. P. 100. https://doi.org/10.1016/0076-6879(90)86095-D
- Shevchenko O.G., Shishkina L.N. // Usp. Sovrem. Biol. 2014. V. 134. № 2. P. 133.
- Sato Y., Kamo S., Takahashi T. et al. // Biochemistry. 1995. V. 34. № 28. P. 8940. https://doi.org/10.1021/bi00028a002
- Celedón G., Rodriguez I., España J. et al. // Free Radical Res. 2001. V. 34. P. 17. https://doi.org/10.1080/10715760100300031
- López-Alarcón C., Fuentes-Lemus E., Figueroa J.D. et al. // Free Radical Biol. Med. 2020. V. 160. P. 78. https://doi.org/10.1016/j.freeradbiomed.2020.06.021
- Sokolova E.M., Dubenskaya N.A., Psikha B.L., Neshev N.I. // Biophysics. 2023. V. 68. № 4. P. 705. https://doi.org/10.31857/S0006302923040099
- Werber J., Wang Y.J., Milligan M. et al. // J. Pharm. Sci. 2011. V. 100. № 8. P. 3307. https://doi.org/10.1002/jps.22578
- Wahl R.U.R., Zeng L., Madison S.A. et al. // J. Chem. Soc., Perkin Trans. 2. 1998. № 9. P. 2009. https://doi.org/10.1039/A801624K
- Krainev A.G., Bigelow D.J. // Ibid. 1996. № 4. P. 747. https://doi.org/10.1039/P29960000747
- Niki E., Komuro E., Takahashi M. et al. // J. Biol. Chem. 1988. V. 263. № 36. P. 19809. https://doi.org/10.1016/S0021-9258(19)77707-2
- Gerasimov G.Ya., Levashov V.Yu. // Khim. Fizika. 2023. V. 42. № 8. P. 12. https://doi.org/10.31857/S0207401X23080046
- Arsentiev S.D., Davtyan A.G., Manukyan Z.O. et al. // Khim. Fizika. 2024. V. 43. № 1. P. 39. https://doi.org/10.31857/S0207401X24010044
- Rusina I.F., Veprintsev T.L., Vasiliev R.F. // Khim. Fizika. 2022. V. 41. № 2. P. 12. https://doi.org/10.31857/S0207401X22020108
- Molodochkina S.V., Loshadkin D.V., Pliss E.M. // Khim. Fizika. 2024. V. 43. № 1. P. 52. https://doi.org/10.31857/S0207401X24010063
- Moskalenko I.V., Tikhonov I.V. // Khim. Fizika. 2022. V. 41. № 7. P. 18. https://doi.org/10.31857/S0207401X22070123
- Serebryakova O.V., Govorin A.V., Prosyanik V.I. et al. // Kazan. Med. Zhurn. 2008. V. 89. № 2. P. 132.
- Harris W.S., Pottala J.V., Varvel S.A. et al. // Prostaglandins Leukot. Essent. Fatty Acids. 2013. V. 88. № 4. P. 257. https://doi.org/10.1016/j.plefa.2012.12.004
- Denisov E.T., Afanas’ev I.B. Oxidation and antioxidants in organic chemistry and biology. Boca Raton (USA): CRC Press, 2005. https://doi.org/10.1201/9781420030853
- Chow C.K. // Amer. J. Clin. Nutr. 1975. V. 28. № 7. P. 756. https://doi.org/10.1093/ajcn/28.7.756
- Oxy Radicals and Their Scavenger Systems / Eds. Cohen G., Greenwald R.A. Amsterdam: Elsevier Science Publ., 1983. V. 1. P. 26.
- Remorova A.A., Roginsky V.A. // Kinet. Katal. 1991. V. 32. № 4. P. 808.
- Mukai K., Sawada K., Kohno Y. et al. // Lipids. 1993. V. 28. P. 747. https://doi.org/10.1007/BF02535998
- Ouchi A., Ishikura M., Konishi K. et al. // Ibid. 2009. V. 44. № 10. P. 935. https://doi.org/10.1007/s11745-009-3339-x
- Guéraud F., Atalay M., Bresgen N. et al. // Free Radical Res. 2010. V. 44. № 10. P. 1098. https://doi.org/10.3109/10715762.2010.498477
- Valgimigli L. // Biomolecules. 2023. V. 13. № 9. Article 1291. https://doi.org/10.3390/biom13091291
- Yoshida Y., Umeno A., Shichiri M. // J. Clin. Biochem. Nutr. 2013. V. 52. № 1. P. 9. https://doi.org/10.3164/jcbn.12-112
- Dahle L.K., Hill E.G., Holman R.T. // Arch. Biochem. Biophys. 1962. V. 98. № 2. P. 253. https://doi.org/10.1016/0003-9861(62)90181-9
- Pryor W.A., Stanley J.P., Blair E. // Lipids. 1976. V. 11. № 5. P. 370. https://doi.org/10.1007/BF02532843
- Kreuzer F., Yahr W.Z. // J. Appl. Physiol. 1960. V. 15. P. 1117. https://doi.org/10.1152/jappl.1960.15.6.1117
- Ivkov V.G., Berestovsky G.N. Lipid bilayer of biological membranes. Moscow: Nauka, 1982.
- Waugh R.E., Sarelius I.H. // Amer. J. Physiol. 1996. V. 271. № 6. P. 1847. https://doi.org/10.1152/ajpcell.1996.271.6.C1847
- Dupuy A.D., Engelman D.M. // PNAS. 2008. V. 105. № 8. P. 2848. https://doi.org/10.1073/pnas.0712379105
- Shurkhina E.S., Nesterenko V.M., Tsvetayeva N.V. et al. // Klin. Lab. Diagn. 2014. № 6. P. 41.
- Novinka P., Korab-Karpinski E., Guzik P. // J. Med. Sci. 2019. V. 88. № 1. P. 52. https://doi.org/10.20883/jms.338
- Verbolovich V.P., Podgorny Yu.K., Podgornaya L.M. // Vopr. Med. Khimii. 1989. V. 35. № 5. P. 35.
- Neshev N.I. Dissertation abstract ... Cand. Sci. (Biol.). Moscow, 2002.
- Alberts B., Bray D., Lewis J. et al. Molecular Biology of the Cell. 2nd ed. Transl. from English. Moscow: Mir, 1994. V. 1.
- Ataullakhanov F.I., Korunova N.O., Spiridonov I.S. et al. // Biol. Membr. 2009. V. 26. № 3. P. 163.
- Cook J.S. // J. Gen. Physiol. 1965. V. 48. № 4. P. 719. https://doi.org/10.1085/jgp.48.4.719
- Deuticke B., Heller K.B., Haest C.W. // Biochim. Biophys. Acta. 1986. V. 854. № 2. P. 169. https://doi.org/10.1016/0005-2736(86)90108-2
Supplementary files
