Формирование слуховых объектов и его отражение в вызванных потенциалах мозга

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Избирательное распознавание звука на фоне конкурирующих звуков (разделение слуховой фигуры и фона) является одной из основных проблем, с которыми сталкивается слушатель в повседневных ситуациях. Компоненты сложных акустических сцен часто перекрываются как по времени, так и по частотному составу. Слуховая система человека непрерывно анализирует их с помощью механизмов одновременной и последовательной группировки, либо формируя устойчивые слуховые объекты, либо демонстрируя переключения восприятия между разделенной и интегрированной организацией звукового потока. Цель обзора – описать слуховые вызванные потенциалы (ВП) как средство исследования перцептивного разделения слуховых объектов в разных экспериментальных парадигмах. Особое внимание в обзоре уделено роли пространственных признаков звука. Они могут вносить значительный вклад в выделение слуховых объектов, хотя и меньший по сравнению с частотными или временными характеристиками. Предсознательное разделение объектов при одновременной группировке и при выделении фигуры из фона отражает потенциал ORN (object-related negativity). Следующая за ORN позитивная волна P400 предположительно связана с когнитивными процессами определения количества звучащих объектов. Анализ ВП позволяет исследовать разные этапы разделения звуковых потоков, когда продолжающаяся стимуляция не меняется, а ее восприятие регулярно переключается между двумя перцептами. Индикаторами переключения восприятия в различных экспериментальных условиях могут выступать компоненты ВП: P1, N1, N2, P3a, MMN и длящийся потенциал. Вклад локализационных признаков в показатели ЭЭГ при выделении фигуры из фона остается недостаточно изученным. С точки зрения фундаментального подхода важно, что разделение потоков происходит уже на предсознательном этапе восприятия, но может проявляться также и в поздних компонентах ВП, связанных с переключением внимания. В целом ВП являются потенциальным клиническим инструментом для оценки формирования слуховых объектов в реальных акустических условиях.

Об авторах

Л. Б. Шестопалова

Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова РАН

Email: shestopalovalb@infran.ru
Санкт-Петербург, 199034 Россия

Список литературы

  1. Шестопалова Л.Б., Петропавловская Е.А. Негативность рассогласования и пространственный слух // Успехи физиологических наук. 2019. Т. 50. № 3. С. 14. doi: 10.1134/S0301179819030093.
  2. Alain C. Breaking the wave: effects of attention and learning on concurrent sound perception // Hear. Res. 2007. V. 229. P. 225–236. doi: 10.1016/j.heares.2007.01.011.
  3. Alain C., Arnott S.R., Picton T.W. Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials // J. Exp. Psychol. Hum. Percept. Perform. 2001. V. 27. doi: 10.1037//0096-1523.27.5.1072.
  4. Alain C., Izenberg A. Effects of attentional load on auditory scene analysis // J. Cogn. Neurosci. 2003. V. 15. https://doi.org/10.1162/089892903770007443.
  5. Alain C., Schuler B.M., McDonald K.L. Neural activity associated with distinguishing concurrent auditory objects // J. Acoust. Soc. Am. 2002. V. 111. https://doi.org/10.1121/1.1434942.
  6. Alain C., Reinke K., McDonald K.L. et al. Left thalamo-cortical network implicated in successful speech separation and identification // Neuroimage. 2005. V. 26. P. 592–599. doi: 10.1016/j.neuroimage.2005.02.006.
  7. Assmann P.F. Modeling the perception of concurrent vowels: Role of formant transitions // J. Acoust. Soc. Am. 1996. V. 100. № 2. P. 1141–1152.
  8. Best V., Gallun F.J., Carlile S., Shinn-Cunnin- gham B.G. Binaural interference and auditory grouping // J. Acoust. Soc. Am. 2007. V. 121. № 2. P. 1070–1076. doi: 10.1121/1.2407738.
  9. Bidelman G.M., Alain C. Hierarchical neurocomputations underlying concurrent sound segregation: Connecting periphery to percept // Neuropsychologia. 2015. V. 68. P. 38–50. doi: 10.1016/j.neuropsychologia.2014.12.020.
  10. Bizley J.K., Cohen Y.E. The what, where and how of auditory-object perception // Nat. Rev. Neurosci. 2013. V. 14. № 10. P. 693–707. doi: 10.1038/nrn3565.
  11. Boehnke S.E., Phillips D.P. The relation between auditory temporal interval processing and sequential stream segregation examined with stimulus laterality differences // Percept. Psychophys. 2005. V. 67. P. 1088–1101. doi: 10.3758/bf03193634.
  12. Bőhm T.M., Shestopalova L., Bendixen A. et al. The role of perceived source location in auditory stream segregation: Separation affects sound organization, common fate does not // Learn. Percept. 2013. V. 5. Suppl. 2. P. 55–72. doi: 10.1556/LP.5.2013.Suppl2.5.
  13. Bregman A.S. Auditory Scene Analysis. 1990. ISBN: 9780262521956. MIT Press.
  14. Calcus A. Development of auditory scene analysis: A mini-review // Front. Hum. Neurosci. 2024. V. 18: 1352247. doi: 10.3389/fnhum.2024.1352247.
  15. Clapp W.C., Johnson B.W., Hautus M.J. Graded cue information in dichotic pitch: Effects on event-related potentials // Neuroreport. 2007. V. 18. № 4. P. 365–368. doi: 10.1097/WNR.0b013e32801776d1.
  16. Culling J.F., Summerfield Q. Perceptual separation of concurrent speech sounds: Absence of across-frequency grouping by common interaural delay // J. Acoust. Soc. Am. 1995. V. 98. P. 785–797.
  17. De Cheveigné A., Kawahara H., Tsuzaki M., Aikawa K. Concurrent vowel identification. I. Effects of relative amplitude and F0 difference // J. Acoust. Soc. Am. 1997. V. 101. № 5. P. 2839–2847.
  18. Denham S.L., Gyimesi K., Stefanics G., Wink- ler I. Stability of perceptual organization in auditory streaming // In: The Neurophysiological Bases of Auditory Perception, eds. E.A. Lo- pez-Poveda, A.R. Palmer, R. Meddis. New York, Springer. 2010. P. 477–487. doi: 10.1007/978-1-4419-5686-6_44.
  19. Denham S.L., Gyimesi K., Stefanics G., Wink- ler I. Perceptual bi-stability in auditory streaming: How much do stimulus features matter? // Learn. Percept. 2013. V. 5. Suppl. 2. P. 73–100. doi: 10.1556/LP.5.2013.Suppl2.6.
  20. Denham S.L., Winkler I. Predictive coding in auditory perception: challenges and unresolved questions // Eur. J. Neurosci. 2020. V. 51. № 5. P. 1151–1160. doi: 10.1111/ejn.13802.
  21. Dougherty R.F., Cynader M.S., Bjornson B.H., Edgell D., Giaschi D.E. Dichotic pitch: A new stimulus distinguishes normal and dyslexic auditory function // NeuroReport. 1998. V. 9. https://doi.org/10.1097/00001756-199809140-00015.
  22. Du Y., He Y., Ross B. et al. Human auditory cortex activity shows additive effects of spectral and spatial cues during speech segregation // Cerebral Cortex. 2010. V. 21. № 3. P. 698–707. doi: 10.1093/cercor/bhq136.
  23. Dyson B.J., Alain C. Representation of concurrent acoustic objects in primary auditory cortex // J. Acoust. Soc. Am. 2004. V. 115. № 1. P. 280–288. doi: 10.1121/1.1631945.
  24. Dyson B.J., Alain C., He Y. Effects of visual attentional load on low-level auditory scene analysis // Cogn. Affect. Behav. Neurosci. 2005. V. 5. doi: 10.3758/cabn.5.3.319.
  25. Fishman Y.I., Steinschneider M., Micheyl C. Neural representation of concurrent harmonic sounds in monkey primary auditory cortex: implications for models of auditory scene analysis // J. Neurosci. 2014. V. 34. № 37. P. 12425–12443. doi: 10.1523/JNEUROSCI.0025-14.2014.
  26. Gohari N., Dastgerdi Z.H., Bernstein L.J., Alain C. Neural correlates of concurrent sound perception: A review and guidelines for future research // Brain and Cognition. 2022. V. 163. 105914. doi: 10.1016/j.bandc.2022.105914.
  27. Gohari N., Dastgerdi Z.H., Rouhbakhsh N., Af- shar S., Mobini R. Training Programs for Improving Speech Perception in Noise: A Review // J. Audiol. Otol. 2023. V. 27. № 1. P. 1–9. https://doi.org/10.7874/jao.2022.00283.
  28. Griffiths T.D., Warren J.D. The planum temporale as a computational hub // Trends in Neurosci. 2002. V. 25. № 7. P. 348–353. doi: 10.1016/s0166-2236(02)02191-4.
  29. Grimault N., Bacon S.P., Micheyl C. Auditory stream segregation on the basis of amplitude-modulation rate // J. Acoust. Soc. Am. 2002. V. 111. P. 1340–1348. doi: 10.1121/1.1452740.
  30. Guo X., Dheerendra P., Benzaquén E., Sed- ley W., Griffiths T.D. EEG responses to auditory figure-ground perception // Hear. Res. 2022. V. 422. 108524. https://doi.org/10.1016/j.heares.2022.108524.
  31. Hautus M.J., Johnson B.W. Object-related brain potentials associated with the perceptual segregation of a dichotically embedded pitch // J. Acoust. Soc. Am. 2005. V. 117. https://doi.org/10.1121/1.1828499.
  32. Higgins N.C., Little D.F., Yerkes B.D. et al. Neural correlates of perceptual switching while listening to bistable auditory streaming stimuli // Neuroimage. 2020. V. 204: 116220. doi: 10.1016/j.neuroimage.2019.116220.
  33. Higgins N.C., Scurry A.N., Jiang F. et al. Adaptation in the sensory cortex drives bistable switching during auditory stream segregation // Neurosci. Conscious. 2023. V. 1. P. 1–12. DOI: https://doi.org./10.1093/nc/niac019.
  34. Johnson B.W. Processing of Binaural Information in Human Auditory Cortex // In: Advances in Sound Localization. P. Strumillo (ed.). 2011. P. 407–430. doi: 10.5772/14268-Source: InTech. ISBN978-953-307-224-1.
  35. Johnson B.W., Hautus M.J. Processing of binaural spatial information in human auditory cortex: Neuromagnetic responses to interaural timing and level differences // Neuropsychologia. 2010. V. 48. № 9. P. 2610–2619. doi: 10.1016/j.neuropsychologia.2010.05.008.
  36. Johnson B.W., Hautus M.J., Duff D.J., Clapp W.C. Sequential processing of interaural timing differences for sound source segregation and spatial localization: Evidence from event-related cortical potentials // Psychophysiol. 2007. V. 44. № 4. P. 541–551. doi: 10.1111/j.1469-8986.2007.00535.x.
  37. Kidd G., Mason C.R., Deliwala P.S., Woods W.S., Colburn H.S. Reducing informational masking by sound segregation // J. Acoust. Soc. Am. 1994. V. 95. P. 3475–3480. doi: 10.1121/1.410023.
  38. Kidd G., Mason C.R., Dai H. Discriminating coherence in spectro-temporal patterns // J. Acoust. Soc. Am. 1995. V. 97. P. 3782–3790. doi: 10.1121/1.413107.
  39. Kidd G., Mason C.R. Multiple bursts, multiple looks, and stream coherence in the release from informational masking // J. Acoust. Soc. Am. 2003. V. 114. P. 2835–2845. doi: 10.1121/1.1621864.
  40. Kocsis Z., Winkler I., Szalárdy O., Bendixen A. Effects of multiple congruent cues on concurrent sound segregation during passive and active listening: An event-related potential (ERP) study // Biol. Psychol. 2014. V. 100. P. 20–33. http://dx.doi.org/10.1016/j.biopsycho.2014.04.005.
  41. Kocsis Z., Winkler I., Bendixen A., Alaine C. Promoting the perception of two and three concurrent sound objects: An event-related potential study // Int. J. Psychophysiol. 2016. V. 107. P. 16–28. doi.org/10.1016/j.ijpsycho.2016.06.016.
  42. Lipp R., Kitterick P., Summerfield Q., Bai- ley P.J., Paul-Jordanov I. Concurrent sound segregation based on inharmonicity and onset asynchrony // Neuropsychologia. 2010. V. 48. № 5. P. 1417–1425. doi: 10.1016/j.neuropsychologia.2010.01.009.
  43. Lodhia V., Brock J., Johnson B.W., Hautus M.J. Reduced object related negativity response indicates impaired auditory scene analysis in adults with autistic spectrum disorder // PeerJ. 2014. Feb 25:2:e261. doi.org/10.7717/peerj.261.
  44. Lodhia V., Hautus M.J., Johnson B.W., Brock J. Atypical brain responses to auditory spatial cues in adults with autism spectrum disorder // Eur. J. Neurosci. 2018. V. 47. № 6. P. 682–689. doi: 10.1111/ejn.13694.
  45. McDonald K.L., Alain C. Contribution of harmonicity and location to auditory object formation in free field: Evidence from event-related brain potentials // J. Acoust. Soc. Am. 2005. V. 118. № 3. Pt 1. P. 1593–1604. doi: 10.1121/1.2000747.
  46. Mehrkian S., Moossavi A., Gohari N., Nazari M.A., Bakhshi E.A.C. Long Latency auditory evoked potentials and object-related negativity based on harmonicity in hearing-impaired children // Neurosci. Res. 2022. V. 178. P. 52–59. doi: 10.1016/j.neures.2022.01.001.
  47. Micheyl C., Oxenham A.J. Objective and subjective psychophysical measures of auditory stream integration and segregation // JARO. 2010. V.11. P. 709–724. doi: 10.1007/s10162-010-0227-2.
  48. Middlebrooks J.C., Onsan Z.A. Stream segregation with high spatial acuity // J. Acoust. Soc. Am. 2012. V. 132. № 6. P. 3896–3911. doi: 10.1121/1.4764879
  49. Molloy K., Lavie N., Chait M. Auditory figure-ground segregation is impaired by high visual load // J. Neurosci. 2019. V. 39. № 9. P. 1699 –1708. https://doi.org/10.1523/JNEUROSCI.2518-18.2018.
  50. Moore B.C., Glasberg B.R., Peters R.W. Thresholds for hearing mistimed partials as separate tones in harmonic complexes // J. Acoust. Soc. Am. 1986. V. 80. P. 479–483.
  51. Pressnitzer D., Hupé J.M. Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization // Curr. Biol. 2006. V. 16. № 13. P. 1351–1357. doi: 10.1016/j.cub.2006.05.054.
  52. Ramage E.M., Klimas N., Vogel S.J. et al. Concurrent sound segregation impairments in schizophrenia: The contribution of auditory-specific and general cognitive factors // Schizophr. Res. 2016. V. 170. № 1. P. 95–101. doi: 10.1016/j.schres.2015.11.023.
  53. Reed D.K., Chait M., Tóth B., Winkler I., Shinn-Cunningham B. Spatial cues can support auditory figure-ground segregation // J. Acoust. Soc. Am. 2020. V. 147. № 6. P. 3814–3818. https://doi.org/10.1121/10.0001387.
  54. Roberts B., Glasberg B.R., Moore B.C. Primitive stream segregation of tone sequences without differences in fundamental frequency or pas-sband // J. Acoust. Soc. Am. 2002. V. 112. P. 2074–2085. doi: 10.1121/1.1508784.
  55. Sanders L.D., Joh A.S., Keen R.E., Freyman R.L. One sound or two? Object-related negativity indexes echo perception // Percept. Psychophys. 2008. V. 70. № 8. P. 1558–1570. doi: 10.3758/PP.70.8.1558.
  56. Sanders R.D., Winston J.S., Barnes G.R., Rees G. Magnetoencephalographic correlates of perceptual state during auditory bistability // Sci. Rep. 2018. V. 8. P. 976. https:// doi.org/10.1038/s41598-018-19287-0.
  57. Schadwinkel S., Gutschalk A. Functional dissociation of transient and sustained fMRI BOLD components in human auditory cortex revealed with a streaming paradigm based on interaural time differences // Eur. J. Neurosci. 2010a. V. 32. P. 1970–1978. doi: 10.1111/j.1460-9568.2010.07459.x.
  58. Schadwinkel S., Gutschalk A. Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues // Cereb. Cortex. 2010b. V. 20. P. 2863–2873. doi: 10.1093/cercor/bhq037.
  59. Schadwinkel S., Gutschalk A. Transient bold activity locked to perceptual reversals of auditory streaming in human auditory cortex and inferior colliculus // J. Neurophysiol. 2011. V. 105. P. 1977–1983. doi: 10.1152/jn.00461.2010.
  60. Schneider F., Dheerendra P., Balezeau F. et al. Auditory figure-ground analysis in rostral belt and parabelt of the macaque monkey // Sci. Rep. 2018. V. 8: 17948. doi: 10.1038/s41598-018-36903-1.
  61. Schneider F., Balezeau F., Distler C. et al. Neuronal figure-ground responses in primate primary auditory cortex // Cell Rep. 2021. V. 35. № 11: 109242. doi: 10.1016/j.celrep.2021.109242.
  62. Shestopalova L., Bőhm T.M., Bendixen A. et al. Do audio-visual motion cues promote segregation of auditory streams? // Front. Neurosci. 2014. V. 8: 64. doi: 10.3389/fnins.2014.00064.
  63. Snyder J.S., Alain C. Toward a neurophysiological theory of auditory stream segregation // Psychol. Bull. 2007. V. 133. № 5. P. 780–799. doi: 10.1037/0033-2909.133.5.780.
  64. Stuckenberg M.V., Nayak C.V., Meyer B.T. et al. Age effects on concurrent speech segregation by onset asynchrony // J. Speech Lang. Hear. Res. 2019. V. 62. № 1. P. 177–189. doi: 10.1044/2018_JSLHR-H-18-0064.
  65. Sussman E.S. Auditory Scene Analysis: An Attention Perspective // J. Speech Lang. Hear. Res. 2017. V. 60. P. 2989–3000. doi: 10.1044/2017_JSLHR-H-17-0041
  66. Sussman E.S., Chen S., Sussman-Fort J., Din- ces E. The five myths of MMN: Redefining how to use MMN in basic and clinical research // Brain Topogr. 2014. V. 27. № 4. P. 553–564. https://doi.org/10.1007/s10548-013-0326-6.
  67. Sussman E.S., Ritter W., Vaughan H.G. An investigation of the auditory streaming effect using event-related brain potentials // Psychophysiol. 1999. V. 36. № 1. P. 22–34.
  68. Szalárdy O., Bendixen A., Tóth D., Denham S.L., Winkler I. Modulation frequency difference acts as a primitive cue for auditory stream segregation // Learn. Percept. 5. Suppl. 2. 2013a. P. 149–161. doi: 10.1556/LP.5.2013.Suppl2.9.
  69. Szalárdy O., Bőhm T.M., Bendixen A., Wink- ler I. Event-related potential correlates of sound organization: Early sensory and late cognitive effects // Biol. Psychol. 2013b. V. 93. P. 97–104. doi: 10.1016/j.biopsycho.2013.01.015.
  70. Teki S., Chait M., Kumar S., von Kriegstein K., Griffiths T.D. Brain bases for auditory stimulus-driven figure-ground segregation // J. Neurosci. 2011. V. 31. P. 164–171. https://doi.org/10.1523/JNEUROSCI.3788-10.2011.
  71. Teki S., Chait M., Kumar S., Shamma S., Grif- fiths T.D. Segregation of complex acoustic scenes based on temporal coherence // eLife. 2013. 2:e00699. doi: 10.7554/eLife.00699.
  72. Teki S., Barascud N., Picard S., Payne C., Grif- fiths T.D., Chait M. Neural correlates of auditory figure-ground segregation based on temporal coherence // Cereb. Cortex. 2016. V. 26. № 9. P. 3669–3680. doi: 10.1093/cercor/bhw173.
  73. Tóth B., Farkas D., Urbán G. et al. Attention and speech-processing related functional brain networks activated in a multispeaker environ- ment // PLoS One 14(2): e0212754. https://doi.org/10.1371/journal.pone.0212754.
  74. Tóth B., Kocsis Z., Háden G.P., Szerafin Á., Shinn-Cunningham B.G., Winkler I. EEG signatures accompanying auditory figure-ground segrega- tion // Neuroimage. 2016. V. 141. P. 108–119. doi: 10.1016/j.neuroimage.2016.07.028.
  75. Van Noorden L.P.A.S. Temporal coherence in the perception of tone sequences // PhD. Eindhoven University of Technology. Leiden. The Netherlands. 1975.
  76. Vliegen J., Oxenham A.J. Sequential stream segregation in the absence of spectral cues // J. Acoust. Soc. Am. 1999. V. 105. P. 339–346.
  77. Weise A., Schröger E., Bendixen A. The processing of concurrent sounds based on inharmonicity and asynchronous onsets: An object-related negativity (ORN) study // Brain Res. 2012. V. 1439. P. 73–81. doi: 10.1016/j.brainres.2011.12.044.
  78. Winkler I., Denham S.L., Nelken I. Modeling the auditory scene: Predictive regularity representations and perceptual objects // Trends Cogn. Sci. 2009. V. 13. P. 532–540. doi: 10.1016/j.tics.2009.09.003.
  79. Winkler I., Denham S., Mill R., Bőhm T.M., Bendixen A. Multistability in auditory stream segregation: A predictive coding view // Phil. Trans. R. Soc. B. 2012. V. 367. P. 1001–1012. doi: 10.1098/rstb.2011.0359.
  80. Winkler I., Takegata R., Sussmann E. Event-related brain potentials reveal multiple stages in the perceptual organization of sound // Cogn. Brain Res. 2005. V. 25. P. 291–299. doi: 10.1016/j.cogbrainres.2005.06.005.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025