Possible Search for Majorana Neutrinos at Future Lepton Colliders

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We discuss the process +NW±">+NW±, where N is a heavy Majorana neutrino and =e,μ">=e,μ. Large cross sections are expected for these processes at high center-of-mass energies, which can be reached at future lepton–lepton colliders. The Monte Carlo simulation of the studied processes is produced within the framework of the seesaw type-I model, where the Majorana neutrinos (or heavy neutral leptons, HNL), are introduced in the standard leptonic sector. Recently the possibility to search for the direct HNL production was studied in the +Nν">+Nν process with the subsequent decay NW±">NW±. In this paper we investigate an alternative process +NW±W±W±">+NW±W±W± with the lepton number violation by two units. The similar processes appear in collisions with the same-sign beams, eeNWeWWe+e">eeNWeWWe+e or μ+μ+">μ+μ+ "> NW+μ+W+W+μ+μ">NW+μ+W+W+μ+μ. The cross sections of the processes under consideration are enhanced by the soft photon exchange in the t-channel. We calculate the cross sections for the signals and potential Standard Model backgrounds for the e+e">e+e beam collisions at the 1 TeV center-of-mass energy and the μ+μ">μ+μ collisions at 3 and 10 TeV. Due to the diagrams with soft t-channel photons and respective interference the promptly emitted leptons are produced in the direction close to the corresponding beam. These leptons will be lost in the beam pipe or badly measured by forward detectors. However, the signal events can be well separated from backgrounds using the rest of the event containing the WW">WW particles. Finally, the expected upper limits on the mixing parameters |VN|2">|VN|2 as a function of M(N) are calculated.

作者简介

E. Antonov

Lebedev Physical Institute, Russian Academy of Sciences

Email: antonoves@lebedev.ru
119991, Moscow, Russia

A. Drutskoy

Lebedev Physical Institute, Russian Academy of Sciences

Email: drutskoy@lebedev.ru
119991, Moscow, Russia

M. Dubinin

Skobeltsyn Institute of Nuclear Physics, Moscow State University

编辑信件的主要联系方式.
Email: dubinin@theory.sinp.msu.ru
119991, Moscow, Russia

参考

  1. A.M. Abdullahi, P.B. Alzah, B. Batell et al. (Collaboration), J. Phys. G 50(2), 020501 (2023)(Contribution to: Proceedings of Snowmass 2021).
  2. F. F. Deppisch, P. S. Bhupal Dev, and A. Pilaftsis, New J. Phys. 17(7), 075019 (2015).
  3. W. Rodejohann, Int. J. Mod. Phys. E 20, 1833 (2011).
  4. T. Asaka and T. Tsuyuki, Phys. Rev. D 92(9), 094012 (2015).
  5. G. Aad, B. Abbott, K. Abeling et al. (ATLAS collaboration), arXiv:2305.14931.
  6. A. Tumasyan, W. Adam, J. W. Andrejkovic et al. (CMS collaboration), Phys. Rev. Lett. 131, 011803 (2023).
  7. A.M. Sirunyan, A. Tumasyan, W. Adam et al. (CMS collaboration), Phys. Rev. Lett. 120, 221801 (2018).
  8. B. Fuks, J. Neundorf, K. Peters, R. Ruiz, and M. Saimpert, Phys. Rev. D 103(5), 055005 (2021).
  9. F. del Aguila, J.A. Aguilar-Saavedra, and R. Pittau, JHEP 10, 047 (2007).
  10. J. L. Schubert and O. Ruchayskiy, arXiv:2210.11294.
  11. K. Me˛ka la, J. Reuter, and A. F. ˙Zarnecki, JHEP 06, 010 (2022).
  12. F. Almeida Jr., Y. Coutinho, J. Martins Simoes, M. do Vale, and S. Wulck, Eur. Phys. J. C 22, 277 (2001).
  13. E. Boos, V. Bunichev, M. Dubinin et al. (CompHEP Collaboration), Nucl. Instrum. Methods A 534, 250 (2004).
  14. A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, S. Shichanin, and A. Semenov, arXiv:hep-ph/9908288.
  15. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, and B. Fuks, Comput. Phys. Commun. 185, 2250 (2014).
  16. W. Kilian, T. Ohl, and J. Reuter, Eur. Phys. J. C 71, 1742 (2011).
  17. J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaˆ itre, A. Mertens, and M. Selvaggi (DELPHES 3 Collaboration), JHEP 02, 057 (2014).
  18. K. Me˛ka la, J. Reuter, and A. F. ˙Zarnecki, Phys. Lett. B 841, 137945 (2023).
  19. T.H. Kwok, L. Li, T. Liu, and A. Rock, arXiv:2301.05177.
  20. P. Li, Z. Liu, K.F. Lyu, arXiv:2301.07117.
  21. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, JHEP 06, 128 (2011).
  22. T. Li, C. Y. Yao, and M. Yuan, arXiv:2306.17368.
  23. H. Gu and K. Wang, Phys. Rev. D 106, 015006 (2022).
  24. A. Semenov, Comput. Phys. Commun. 180, 431 (2009).
  25. T. Sjostrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05, 026 (2006).
  26. S. Banerjee, P. S.B. Dev, A. Ibarra, T. Mandal, and M. Mitra, Phys. Rev. D 92, 075002 (2015).
  27. J. L. Yang, C.H. Chang, and T. F. Feng, arXiv:2302.13247.
  28. R. Jiang, T. Yang, S. Qian, Y. Ban, J. Li, Z. You, and Q. Li, arXiv:2304.04483.
  29. J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980).
  30. J. Casas and A. Ibarra, Nucl. Phys. B 618, 171 (2001).
  31. A. Ibarra, E. Molinaro, and S. Petcov, JHEP 09, 108 (2010).
  32. B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958).
  33. Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
  34. T. Asaka, S. Eijima, and H. Ishida, JHEP 04, 011 (2011).
  35. K. Bondarenko, A. Boyarsky, J. Klaric, O. Mikulenko, O. Ruchayskiy, V. Syvolap, and I. Timiryasov, JHEP 07, 193 (2021).
  36. S. Alekhin, W. Altmannshofer, T. Asaka et al. (Collaboration), Rep. Prog. Phys. 79, 124201 (2016).
  37. M. Drewes, arXiv:2210.17110.
  38. E. Boos, M. Dubinin, A. Pukhov, M. Sachwitz, and H. J. Schreiber, Eur. Phys. J. C 21, 81 (2001).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023