Features of the Scaling of the Anomalous Hall Effect in (CoFeB)x(LiNbO3)100 − x Nanocomposite Films Below the Percolation Threshold: Manifestation of the Cotunneling Hall Conductance?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A scaling behavior of the anomalous Hall effect resistivity ρAHE versus the longitudinal resistivity ρ in (CoFeB)x(LiNbO3)100 − x nanocomposites with a low content of dispersed Co and Fe atoms (Nd ~ 4 × 1020 cm−3) in an amorphous LiNbO3 matrix is studied in the range x ≈ 40–48 at % below the percolation threshold xp ≈ 49 at %. A logarithmic temperature dependence of the conductivity σ ~ lnT  has been observed in the range x ≈ 44–48 at %, which is transformed in the range x ≈ 40–42 at % to a square root law lnσ ∝ ‒(T0/T)1/2, which is characteristic of cotunneling transport processes in nanocomposites. It has been found that the exponent n ≈ 0.24 in the scaling law ρAHE/x ∝ [ρ(x)]n coincides within an accuracy of 5% with the exponent n in a similar dependence for nanocomposites based on the (CoFeB)x(Al2O3)100 − x matrix with a high content Nd ~1021–1022 cm–3 and with the exponent n in a parametric dependence ρAHE ∝ [ρ(T)]n for the samples with the minimum content x ≈ 40 at %. The found features are attributed to the correlated change in the probability of cotunneling transitions in a set of more than three centers under the effect of spin–orbit coupling. The manifestation of the barrier tunneling anomalous Hall effect at granule interfaces is also p-ossible.

About the authors

S. N. Nikolaev

National Research Center Kurchatov Institute

Email: niklser@list.ru
123182, Moscow, Russia

K. Yu. Chernoglazov

National Research Center Kurchatov Institute

Email: niklser@list.ru
123182, Moscow, Russia

A. Sh. Bugaev

Moscow Institute of Physics and Technology (National Research University);Fryazino Branch, Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: niklser@list.ru
141701, Dolgoprudnyi, Moscow region, Russia;141190, Fryazino, Moscow region, Russia

A. B. Granovskiy

Faculty of Physics, Moscow State University;Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences

Email: niklser@list.ru
119991, Moscow, Russia;125412, Moscow, Russia

V. V. Ryl'kov

National Research Center Kurchatov Institute;Fryazino Branch, Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences;Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences

Author for correspondence.
Email: niklser@list.ru
123182, Moscow, Russia;141190, Fryazino, Moscow region, Russia;125412, Moscow, Russia

References

  1. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
  2. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
  3. H. Wang, Y. Dai, G.-M. Chow, and J. Chen, Prog. Mater. Sci. 130, 100971 (2022).
  4. L. Sˇmejkal, A. H. MacDonald, J. Sinova, S. Nakatsuji, and T. Jungwirth, Nat. Rev. Mater. 7, 482 (2022).
  5. L. Sˇmejkal, J. Sinova, S. Nakatsuji, and T. Jungwirth, Phys. Rev. X 12, 040501 (2022).
  6. S. A. Tarasenko, V. I. Perel, and I. N. Yassievich, Phys. Rev. Lett. 93, 056601 (2004).
  7. A. Vedyayev, N. Ryzhanova, N. Strelkov, and B. Dieny, Phys. Rev. Lett. 110, 247204 (2013).
  8. A. V. Vedyayev, M. S. Titova, N. V. Ryzhanova, M. Y. Zhuravlev, and E. Y. Tsymbal, Appl. Phys. Lett. 103, 032406 (2013).
  9. A. Matos-Abiague and J. Fabian, Phys. Rev. Lett. 115, 056602 (2015).
  10. Е. А. Караштин, Н. С. Гусев, И. Ю. Пашенькин, М. В. Сапожников, А. А. Фраерман, ЖЭТФ 163, 5 (2023).
  11. V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V. A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).
  12. В. В. Рыльков, С. Н. Николаев, В. А. Демин, А. В. Емельянов, А. В. Ситников, К. Э. Никируй, В. А. Леванов, М. Ю. Пресняков, А. Н. Талденков, А. Л. Васильев, К. Ю. Черноглазов, А. С. Веденеев, Ю. Е. Калинин, А. Б. Грановский, В. В. Тугушев, А. С. Бугаев, ЖЭТФ 153, 424 (2018).
  13. Е. В. Кучис, Гальваномагнитные эффекты и методы их исследования, Радио и связь, М. (1990), 264 с.
  14. С. Н. Николаев, К. Ю. Черноглазов, А. В. Емельянов, А. В. Ситников, А. Н. Талденков, Т. Д. Пацаев, А. Л. Васильев, Е. А. Ганьшина, В. А. Демин, Н. С. Аверкиев, А. Б. Грановский, В. В. Рыльков, Письма в ЖЭТФ 118, 46 (2023).
  15. I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).
  16. A. Pakhomov, X. Yan, and B. Zhao, Appl. Phys. Lett. 67, 3497 (1995).
  17. S. Onoda, N. Sugimoto, and N. Nagaosa, Phys. Rev. B 77, 165103 (2008).
  18. Б. А. Аронзон, Д. Ю. Ковалев, А. Н. Лагарьков, Е. З. Мейлихов, В. В. Рыльков, М. В. Седова, N. Negre, M. Goiran, J. Leotin, Письма в ЖЭТФ 70, 87 (1999).
  19. А. В. Ведяев, А. Б. Грановский, О. А. Котельникова, Кинетические явления в неупорядоченных ферромагнитных сплавах, изд-во МГУ, М. (1992).
  20. А. В. Ведяев, А. Б. Грановский, А. В. Калицов, Ф. Брауэрс, ЖЭТФ 112, 2198 (1997).
  21. Y. Tian, L. Ye, and X. Jin, Phys. Rev. Lett. 103, 087206 (2009).
  22. D. Hou, G. Su, Y. Tian, X. Jin, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 114, 217203 (2015).
  23. Л. В. Луцев, М. Н. Копытин, А. В. Ситников, О. В. Стогней, ФТТ 47, 2080 (2005).
  24. H. Meier, M. Y. Kharitonov, and K. B. Efetov, Phys. Rev. B 80, 045122 (2009).
  25. X. Liu, S. Shen, Z. Ge, W. L. Lim, M. Dobrowolska, and J. K. Furdyna, Phys. Rev. B 83, 144421 (2011).
  26. A. Shitade, and N. Nagaosa, J. Phys. Soc. Jpn. 81, 083704 (2012).
  27. A. V. Vedyaev and A. B. Granovsky, Sov. Phys. Solid State 28, 1293 (1986).
  28. X.-J. Liu, X. Liu, and J. Sinova, Phys. Rev. B 84, 165304 (2011).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук