Spatially Inhomogeneous Ultrafast Demagnetization of a Nickel Magnetoplasmonic Crystal

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A 50% decrease in the magneto-optical Kerr effect is observed in the experiment on subpicosecond laser-induced demagnetization of the one-dimensional all-nickel magnetoplasmonic crystal. The femtosecond pulse energy density is comparable to that required to achieve similar values in thin films. Numerical calculations show that such a decrease is not governed by the uniform reduction of surface magnetization, but is the result of the appearance of demagnetized and non-demagnetized areas of the surface.

Авторлар туралы

I. Novikov

Faculty of Physics, Moscow State University

Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

M. Kir'yanov

Faculty of Physics, Moscow State University

Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

A. Frolov

Faculty of Physics, Moscow State University

Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

V. Popov

Faculty of Physics, Moscow State University

Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

T. Dolgova

Faculty of Physics, Moscow State University

Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

A. Fedyanin

Faculty of Physics, Moscow State University

Хат алмасуға жауапты Автор.
Email: fedyanin@nanolab.phys.msu.ru
119991, Moscow, Russia

Әдебиет тізімі

  1. E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).
  2. M. Pankratova, I. P Miranda, D. Thonig, M. Pereiro, E. Sj¨oqvist, A. Delin, O. Eriksson, and A. Bergman. Phys. Rev. B 106, 174407 (2022).
  3. B. Mueller and B. Rethfeld. Phys. Rev. B 90, 144420 (2014).
  4. B. Koopmans, J. J.M. Ruigrok, F. Dalla Longa, and W. J.M. de Jonge, Phys. Rev. Lett. 95, 267207 (2005).
  5. K. Carva, M. Battiato, and P.M. Oppeneer, Phys. Rev. Lett. 107, 207201 (2011).
  6. Z. Zheng, Q. Zheng, and J. Zhao. Phys. Rev. B 105, 085142 (2022).
  7. U. Atxitia and O. Chubykalo-Fesenko. Phys. Rev. B 84, 144414 (2011).
  8. K. Krieger, J. Dewhurst, P. Elliott, S. Sharma, and E. Gross, J. Chem. Theory Comput. 11, 4870 (2015).
  9. S.R. Acharya, V. Turkowski, G. Zhang, and T. S. Rahman, Phys. Rev. Lett. 125, 017202 (2020).
  10. H. Hamamera, F. S.M. Guimar aes, M. dos Santos Dias, and S. Lounis, Commun. Phys. 5, 16 (2022).
  11. A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. F¨ohlisch, P.M. Oppeneer, and C. Stamm, Nat. Mater. 12, 332 (2013).
  12. G. Salvatella, R. Gort, K. B¨uhlmann, S. D¨aster, A. Vaterlaus, and Y. Acremann, Struct. Dyn. 3, 055101 (2016).
  13. K. Krieger, P. Elliott, T. M¨uller, N. Singh, J. Dewhurst, E. Gross, and S. Sharma, J. Phys. Condens. Matter 29, 224001 (2017).
  14. K. Kuiper, G. Malinowski, F. Dalla Longa, and B. Koopmans, J. Appl. Phys. 109, 07D316 (2011).
  15. Y. Kivshar, Nano Lett. 22, 3513 (2022).
  16. A.A. Popkova, I.M. Antropov, G. I. Tselikov, G.A. Ermolaev, I. Ozerov, R.V. Kirtaev, S.M. Novikov, A.B. Evlyukhin, A.V. Arsenin, V.O. Bessonov, V. S. Volkov, and A.A. Fedyanin, Laser Photonics Rev. 16, 2100604 (2022).
  17. Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, Phys. Rev. B, 100, 115303 (2019).
  18. А.М. Черняк, М. Г. Барсукова, А.С. Шорохов, А.И. Мусорин, А.А. Федянин, Письма в ЖЭТФ 111, 40 (2020)
  19. A.M. Chernyak, M.G. Barsukova, A. S. Shorokhov, A. I. Musorin, and A.A. Fedyanin, JETP Lett. 111, 46 (2020).
  20. D.O. Ignatyeva, D. Karki, A.A. Voronov, M.A. Kozhaev, D.M. Krichevsky, A. I. Chernov, M. Levy, and V. I. Belotelov, Nat. Commun. 11, 5487 (2020).
  21. Д.А. Шилкин, А.А. Федянин, Письма вЖЭТФ 115, 157 (2022)
  22. D.A. Shilkin and A.A. Fedyanin, JETP Lett. 115, 136 (2022).
  23. B. I. Afinogenov, V.O. Bessonov, I.V. Soboleva, and A.A. Fedyanin, ACS Photonics 6, 844 (2019).
  24. K.A. Willets and R.P. van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).
  25. N. Maccaferri, A. Gabbani, F. Pineider, T. Kaihara, T. Tapani, and P. Vavassori, Appl. Phys. Lett. 122, 120502 (2023).
  26. V.G. Kravets, A.V. Kabashin, W. L. Barnes, and A.N. Grigorenko, Chem. Rev. 118, 5912 (2018).
  27. A. I. Musorin, A.V. Chetvertukhin, T.V. Dolgova, H. Uchida, M. Inoue, B. S. Luk'yanchuk, and A.A. Fedyanin, Appl. Phys. Lett. 115, 151102 (2019).
  28. W. L. Barnes, A. Dereux, and T.W. Ebbesen, Nature 424, 824 (2003).
  29. M.R. Shcherbakov, P.P. Vabishchevich, A.Yu. Frolov, T.V. Dolgova, and A.A. Fedyanin, Phys. Rev. B 90, 201405 (2014).
  30. D.V. Murzin, A.Yu. Frolov, K.A. Mamian, V.K. Belyaev, A.A. Fedyanin, and V.V. Rodionova, Opt. Mater. Express 13, 171 (2023).
  31. A.N. Koya, M. Romanelli, J. Kuttruff et al. (Collaboration), Appl. Phys. Rev. 10, 021318 (2023).
  32. D. Ryabov, O. Pashina, G. Zograf, S. Makarov, and M. Petrov, Nanophotonics 11, 3981 (2022).
  33. G. Zograf, K. Koshelev, A. Zalogina, V. Korolev, R. Hollinger, D.-Y. Choi, M. Zuerch, C. Spielmann, B. Luther-Davies, D. Kartashov, S.V. Makarov, S. S. Kruk, and Y. Kivshar, ACS Photonics 9, 567 (2022).
  34. M.A. Kiryanov, A.Yu. Frolov, I.A. Novikov, P.A. Kipp, P.K. Nurgalieva, V.V. Popov, A.A. Ezhov, T.V. Dolgova, and A.A. Fedyanin, APL Photonics 7, 026104 (2022).
  35. V.K. Belyaev, V.V. Rodionova, A.A. Grunin, M. Inoue, and A.A. Fedyanin, Sci. Rep. 10, 7133 (2020).
  36. A.Yu. Frolov, M.R. Shcherbakov, and A.A. Fedyanin, Phys. Rev. B 101, 045409 (2020).
  37. M. Kataja, F. Freire Fernandez, J. Witteveen, T. Hakala, P. T¨orm¨a, and S. Dijken, Appl. Phys. Lett. 112, 072406 (2017).
  38. H. Xu, G. Hajisalem, G. Steeves, R. Gordon, and B.-C. Choi, Sci. Rep. 5, 15933 (2015).
  39. I.A. Novikov, M.A. Kiryanov, P.K. Nurgalieva, A.Yu. Frolov, V.V. Popov, T.V. Dolgova, and A.A. Fedyanin, Nano Lett. 20, 8615 (2020).
  40. M. Taghinejad, H. Taghinejad, Z. Xu, K.-T. Lee, S.P. Rodrigues, J. Yan, A. Adibi, T. Lian, and W. Cai, Nano Lett. 18, 5544 (2018).
  41. A. Schirato, M. Maiuri, A. Toma, S. Fugattini, R. Proietti Zaccaria, P. Laporta, P. Nordlander, G. Cerullo, A. Alabastri, and G. Della Valle, Nat. Photon. 14, 723 (2020).
  42. G.V. Hartland, Chem. Rev. 111, 3858 (2011).
  43. М.А. Кирьянов, Г.С. Останин, Т.В. Долгова, М. Иноуэ, А.А. Федянин, Письма вЖЭТФ 117, 201 (2023)
  44. M.A. Kiryanov, G. S. Ostanin, T.V. Dolgova, M. Inoue, and A.A. Fedyanin, JETP Lett. 117, 196 (2023).
  45. C. Voisin, D. Christofilos, N. Del Fatti, F. Vall'ee, B. Pr'evel, E. Cottancin, J. Lerm'e, M. Pellarin, and M. Broyer, Phys. Rev. Lett. 85, 2200 (2000).
  46. T. Roth, A. J. Schellekens, S. Alebrand, O. Schmitt, D. Steil, B. Koopmans, M. Cinchetti, and M. Aeschlimann, Phys. Rev. X 2, 021006 (2012).
  47. K. Krieger, P. Elliott, T. M¨uller, N. Singh, J. Dewhurst, E. Gross, and S. Sharma, J. Phys. Condens. Matter 29, 224001 (2017).
  48. U. Bierbrauer, S.T. Weber, D. Schummer, M. Barkowski, A.-K. Mahro, S. Mathias, H.C. Schneider, B. Stadtm¨uller, M. Aeschlimann, and B. Rethfeld, J. Phys., Condens. Matter 29, 244002 (2017).
  49. С.И. Анисимов, Б.Л. Капелиович, Т.Л. Перельман, ЖЭТФ 66, 776 (1974).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Российская академия наук, 2023