Generation of Quantum Vortices by Waves on the Surface of Superfluid Helium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The formation of quantum vortices by two mutually perpendicular waves excited on the surface of superfluid helium has been observed. The interaction of negative charges injected under the surface of He-II with the vortex flow of the liquid, which is formed by surface waves at frequencies from 20 to 49.9 Hz, in the temperature range of 1.5–2.17 K has been studied experimentally by analyzing the current distribution detected by vertically oriented segments of a receiving collector. The efficient capture of injected charges by quantum vortices has been observed at a temperature of T = 1.5 K, which leads to a significant redistribution of currents between segments of the receiving collector. Charges leave traps on quantum vortices at temperatures near T = 1.7 K. With a further increase in the temperature, injected charges are scattered on vortex flows of the normal component, which are generated by surface waves.

Sobre autores

M. Sultanova

Osipyan Institute of Solid State Physics, Russian Academy of Sciences;Landau Institute for Theoretical Physics, Russian Academy of Sciences

Email: mabinkaiftt@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia

I. Remizov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences;Landau Institute for Theoretical Physics, Russian Academy of Sciences

Email: mabinkaiftt@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia

L. Mezhov-deglin

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: mabinkaiftt@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

A. Levchenko

Osipyan Institute of Solid State Physics, Russian Academy of Sciences;Landau Institute for Theoretical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: mabinkaiftt@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia

Bibliografia

  1. W. F. Vinen, Proceedings of the Royal Society A 260, 218 (1961).
  2. W. F. Vinen and R. J. Donnelly, Phys. Today 60(4), 43 (2007).
  3. P. M. Walmsley, A. A. Levchenko, and A. I. Golov, J. Low Temp. Phys. 145, 143 (2006).
  4. S. K. Nemirovskii, Phys. Rev. B 102, 064511 (2020).
  5. P. M. Walmsley, A. I. Golov, H. E. Hall, A. A. Levchenko, and W. F. Vinenet, Phys. Rev. Lett. 99, 265302 (2007).
  6. W. F. Vinen, J. Low Temp. Phys. 145, 7 (2006).
  7. P. Moroshkin, P. Leiderer, K. Kono, S. Inui, and M. Tsubota, Phys. Rev. Lett. 122, 174502 (2019).
  8. S. V. Filatov, V. M. Parfenyev, S. S. Vergeles, M. Yu. Brazhnikov, A. A. Levchenko, and V. V. Lebedevand, Phys. Rev. Lett. 116, 054501 (2016).
  9. I. A. Remizov, M. R. Sultanova, A. A. Levchenko, and L. P. Mezhov-Deglin, Fizika Nizkikh Temperatur 47, 409 (2021)
  10. Low Temperature Physics 47, 378 (2021).
  11. R. J. Donnelly, Quantized vortices in Helium II, Cambridge University Press, Cambridge (1991), v. 233, p. 690.
  12. R. J. Donnelly, Phys. Rev. Lett. 14, 39 (1965).
  13. R. L. Douglass, Phys. Rev. Lett. 13, 791, (1964).
  14. D. Mateo, J. Eloranta, and G. A. Williams, J. Chem. Phys. 142, 064510 (2015).
  15. J. W. P. Pratt and J. W. Zimmermann, Phys. Rev. 177, 412 (1969).
  16. P. M. Walmsley, A. A. Levchenko, S. E. May, and A. I. Golov, J. Low Temp. Phys. 146, 511 (2007).
  17. R. Donnelly and C. F.Barenghi, J. Phys. Chem. Ref. Data 27(6), 1217 (1998).
  18. S. V. Filatov and A. A. Levchenko, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 14, 751 (2020).
  19. S. V. Filatov, A. V. Poplevin, A. A. Levchenko, and V. M. Parfenyev, Physica D: Nonlinear Phenomena 434, 133218 (2022).
  20. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon press, N.Y. (1989), v. 6.
  21. V. M. Parfenyev and S. S. Vergeles, Phys. Rev. Fluids 5, 094702 (2020).
  22. V. B. Shikin and Yu. P. Monarkha, Two-dimensional electron system in helium, Nauka, Fizmatlit, Moscow (1989).
  23. V. P.Ruban, JETP 133, 779 (2020).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023