Measurement of the Thermal Conductivity of Carbon Nanowalls by the 3ω Method
- Authors: Chernodubov D.A1, Bondareva Y.V2, Shibalov M.V3, Mumlyakov A.M3, Zhdanov V.L4, Tarkhov M.A3, Maslakov K.I5, Suetin N.V6, Kvashnin D.G7,8
-
Affiliations:
- National Research Center Kurchatov Institute
- Skolkovo Institute of Science and Technology
- Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences
- National Research University Higher School of Economics
- Moscow State University
- Skobeltsyn Institute of Nuclear Physics, Moscow State University
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Pirogov Russian National Research Medical University
- Issue: Vol 117, No 5-6 (3) (2023)
- Pages: 443-449
- Section: Articles
- URL: https://vestnik.nvsu.ru/0370-274X/article/view/662557
- DOI: https://doi.org/10.31857/S1234567823060083
- EDN: https://elibrary.ru/QSWCQL
- ID: 662557
Cite item
Abstract
Carbon nanowall films with different thicknesses have been obtained by chemical deposition from a gas phase in a dc discharge. The thermal conductivity of the resulting structures has been measured for the first time using the 3ω method in the temperature range of 280–310 K. It has been shown that the thermal conductivity of walls depends on their thickness. The thermal conductivity of 1-μm carbon nanowalls is 6.9 W m–1 K–1. The results obtained in this work are necessary to design electro-optical devices based on carbon nanowalls.
About the authors
D. A Chernodubov
National Research Center Kurchatov Institute
Email: dgkvashnin@phystech.edu
123182, Moscow, Russia
Yu. V Bondareva
Skolkovo Institute of Science and Technology
Email: dgkvashnin@phystech.edu
121205, Moscow, Russia
M. V Shibalov
Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences
Email: dgkvashnin@phystech.edu
119991, Moscow, Russia
A. M Mumlyakov
Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences
Email: dgkvashnin@phystech.edu
119991, Moscow, Russia
V. L Zhdanov
National Research University Higher School of Economics
Email: dgkvashnin@phystech.edu
101000, Moscow, Russia
M. A Tarkhov
Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences
Email: dgkvashnin@phystech.edu
101000, Moscow, Russia
K. I Maslakov
Moscow State University
Email: dgkvashnin@phystech.edu
119991, Moscow, Russia
N. V Suetin
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: dgkvashnin@phystech.edu
119991, Moscow, Russia
D. G Kvashnin
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Pirogov Russian National Research Medical University
Author for correspondence.
Email: dgkvashnin@phystech.edu
119334, Moscow, Russia; 117997, Moscow, Russia
References
- P. Lall, M. Pecht, and E. Hakim, Influence of Temperature on Microelectronics and System Reliability, CRC Press, N.Y. (1997).
- A. Inyushkin, A. Taldenkov, V. Ralchenko, A. Bolshakov, A. Koliadin, and A. Katrusha, Phys. Rev. B 97, 144305 (2018).
- A.A. Balandin, Nature Mater 10, 569 (2011).
- А.И. Подливаев, К.С. Гришаков, К.П. Катин, М.М. Маслов, Письма в ЖЭТФ 114, 172 (2021)
- JETP Lett. 114, 143 (2021).
- А.И. Подливаев, К.С. Гришаков, К.П. Катин, М.М. Маслов, Письма в ЖЭТФ 113, 182 (2021)
- JETP Lett. 113, 169 (2021).
- А.И. Подливаев, Письма в ЖЭТФ 115, 384 (2022).
- N.D. Orekhov, J.V. Bondareva, D.O. Potapov et al. (Collaboration), Carbon 191, 546 (2022).
- N. Orekhov and M. Logunov, Carbon 192, 179 (2022).
- V.M. Egorov, A.K. Borisov, and V.A. Marikhin, Technical Physics Letters 48, 49 (2022).
- A.N. Enyashin, G. Seifert, and A. L. Ivanovskii, JETP Lett. 80, 608 (2004).
- H. Malekpour, P. Ramnani, S. Srinivasan, G. Balasubramanian, D.L. Nika, A. Mulchandani, R.K. Lake, and A.A. Balandin, Nanoscale 8, 14608 (2016).
- T. Chen, Y. Huang, L. Wei, T. Xu, and Y. Xie, Carbon 203, 130 (2023).
- Y.Wu, B. Yang, B. Zong, H. Sun, Z. Shen, and Y. Feng, J. Mater. Chem. 14, 469 (2004).
- M. Hiramatsu and M. Hori, Carbon Nanowalls: Synthesis and Emerging Applications, Springer Science & Business Media, Wien (2010).
- S. Evlashin, M. Tarkhov, D. Chernodubov, A. Inyushkin, A. Pilevsky, P. Dyakonov, A. Pavlov, N. Suetin, I. Akhatov, and V. Perebeinos, Phys. Rev. Appl. 15, 054057 (2021).
- A.M. Mumlyakov, M.V. Shibalov, E.R. Timofeeva, I.V. Trofimov, N.V. Porokhov, S.A. Evlashin, P.A. Nekludova, E.A. Pershina, Yu.V. Anufriev, A.M. Tagachenkov, E.V. Zenova, and M.A. Tarkhov, Carbon 184, 698 (2021).
- S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, Optical and IR Absorption of Multilayer Carbon Nanowalls, Carbon 70, 111 (2014).
- H. J. Cho, H. Kondo, K. Ishikawa, M. Sekine, M. Hiramatsu, and M. Hori, Carbon 68, 380 (2014).
- K. Kobayashi, M. Tanimura, H. Nakai, A. Yoshimura, H. Yoshimura, K. Kojima, and M. Tachibana, J. Appl. Phys. 101, 094306 (2007).
- V.A. Krivchenko, S.A. Evlashin, K.V. Mironovich, N. I. Verbitskiy, A. Nefedov, C. W¨oll, A.Ya. Kozmenkova, N.V. Suetin, S.E. Svyakhovskiy, D.V. Vyalikh, A.T. Rakhimov, A.V. Egorov, and L.V. Yashina, Sci. Rep. 3, 1 (2013).
- M. Hiramatsu, S. Mitsuguchi, T. Horibe, H. Kondo, M. Hori, and H. Kano, Jpn. J. Appl. Phys. 52, 01AK03 (2013).
- W. Wei and Y.H. Hu, J. Mater. Chem. A 5, 24126 (2017).
- V.A. Krivchenko, D.M. Itkis, S.A. Evlashin, D.A. Semenenko, E.A. Goodilin, A.T. Rakhimov, A. S. Stepanov, N.V. Suetin, A.A. Pilevsky, and P.V. Voronin, Carbon 50, 1438 (2012).
- Y. Zhang, L. Tan, H. Yin, G. Zhang, and J. Liu, Experimental Measurements of Thermal Performances of Carbon Nanomaterial with Vertical Structures in Hotspot Heat Dissipation, in 2019 IEEE 19th International Conference on Nanotechnology (IEEENANO), Institute of Electrical and Electronics Engineers, Macao, China (2019), p. 370.
- A. Achour, B. E. Belkerk, K. Ait Aissa, S. Vizireanu, E. Gautron, M. Carette, P.-Y. Jouan, G. Dinescu, L. Le Brizoual, Y. Scudeller, and M.-A. Djouadi, Appl. Phys. Lett. 102, 061903 (2013).
- A. Bilusic, S. Gradecak, A. Tonejc, A. Tonejc, J. Lasjaunias, and A. Smontara, Synth. Met. 121, 1121 (2001).
- J. Lasjaunias, M. Saint-Paul, A. Biluˇsi'c, A. Smontara, S. Gradeˇcak, A. Tonejc, A. Tonejc, and N. Kitamura, Phys. Rev. B 66, 014302 (2002).
- S.A. Evlashin, F. S. Fedorov, P.V. Dyakonov et al. (Collaboration), J. Phys. Chem. Lett. 11, 4859 (2020).
- A.M. Mumlyakov, M.V. Shibalov, I.V. Trofimov, M.G. Verkholetov, A.P. Orlov, G.D. Diudbin, S.A. Evlashin, P.A. Nekludova, Yu.V. Anufriev, A.M. Tagachenkov, E.V. Zenova, and M.A. Tarkhov, J. Alloys Compd. 858, 157713 (2021).
- P. Dyakonov, K. Mironovich, S. Svyakhovskiy, O. Voloshina, S. Dagesyan, A. Panchishin, N. Suetin, V. Bagratashvili, P. Timashev, E. Shirshin, and S. Evlashin, Sci. Rep. 7, 1 (2017).
- D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).
- D.A. Chernodoubov and A.V. Inyushkin, Rev. Sci. Instrum. 90(2), 024904 (2019).
- J. Alvarez-Quintana and J. Rodriguez-Viejo, Sensors and Actuators A: Physical 142, 232 (2008).
- D.A. Chernodubov, I.O. Maiboroda, M. L. Zanaveskin, and A.V. Inyushkin, Phys. Solid State 62, 722 (2020).
- L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalh˜aes- Paniago, and M.A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006).
- C. Dames, Annual Review of Heat Transfer 16, 7 (2013).
- M.A. Panzer, M. Shandalov, J.A. Rowlette, Y. Oshima, Y.W. Chen, P.C. McIntyre, and K.E. Goodson, IEEE Electron Device Letters 30, 1269 (2009).
- M.T. Barako, A. Sood, C. Zhang, J. Wang, T. Kodama, M. Asheghi, X. Zheng, P.V. Braun, and K.E. Goodson, Nano Lett. 16, 2754 (2016).
- D. L. Nika, A. S. Askerov, and A.A. Balandin, Nano Lett. 12, 3238 (2012).
- G.A. Slack, Phys. Rev. 127, 694 (1962).
Supplementary files
