Measurement of the Thermal Conductivity of Carbon Nanowalls by the 3ω Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Carbon nanowall films with different thicknesses have been obtained by chemical deposition from a gas phase in a dc discharge. The thermal conductivity of the resulting structures has been measured for the first time using the 3ω method in the temperature range of 280–310 K. It has been shown that the thermal conductivity of walls depends on their thickness. The thermal conductivity of 1-μm carbon nanowalls is 6.9 W m–1 K–1. The results obtained in this work are necessary to design electro-optical devices based on carbon nanowalls.

About the authors

D. A Chernodubov

National Research Center Kurchatov Institute

Email: dgkvashnin@phystech.edu
123182, Moscow, Russia

Yu. V Bondareva

Skolkovo Institute of Science and Technology

Email: dgkvashnin@phystech.edu
121205, Moscow, Russia

M. V Shibalov

Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences

Email: dgkvashnin@phystech.edu
119991, Moscow, Russia

A. M Mumlyakov

Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences

Email: dgkvashnin@phystech.edu
119991, Moscow, Russia

V. L Zhdanov

National Research University Higher School of Economics

Email: dgkvashnin@phystech.edu
101000, Moscow, Russia

M. A Tarkhov

Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences

Email: dgkvashnin@phystech.edu
101000, Moscow, Russia

K. I Maslakov

Moscow State University

Email: dgkvashnin@phystech.edu
119991, Moscow, Russia

N. V Suetin

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: dgkvashnin@phystech.edu
119991, Moscow, Russia

D. G Kvashnin

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Pirogov Russian National Research Medical University

Author for correspondence.
Email: dgkvashnin@phystech.edu
119334, Moscow, Russia; 117997, Moscow, Russia

References

  1. P. Lall, M. Pecht, and E. Hakim, Influence of Temperature on Microelectronics and System Reliability, CRC Press, N.Y. (1997).
  2. A. Inyushkin, A. Taldenkov, V. Ralchenko, A. Bolshakov, A. Koliadin, and A. Katrusha, Phys. Rev. B 97, 144305 (2018).
  3. A.A. Balandin, Nature Mater 10, 569 (2011).
  4. А.И. Подливаев, К.С. Гришаков, К.П. Катин, М.М. Маслов, Письма в ЖЭТФ 114, 172 (2021)
  5. JETP Lett. 114, 143 (2021).
  6. А.И. Подливаев, К.С. Гришаков, К.П. Катин, М.М. Маслов, Письма в ЖЭТФ 113, 182 (2021)
  7. JETP Lett. 113, 169 (2021).
  8. А.И. Подливаев, Письма в ЖЭТФ 115, 384 (2022).
  9. N.D. Orekhov, J.V. Bondareva, D.O. Potapov et al. (Collaboration), Carbon 191, 546 (2022).
  10. N. Orekhov and M. Logunov, Carbon 192, 179 (2022).
  11. V.M. Egorov, A.K. Borisov, and V.A. Marikhin, Technical Physics Letters 48, 49 (2022).
  12. A.N. Enyashin, G. Seifert, and A. L. Ivanovskii, JETP Lett. 80, 608 (2004).
  13. H. Malekpour, P. Ramnani, S. Srinivasan, G. Balasubramanian, D.L. Nika, A. Mulchandani, R.K. Lake, and A.A. Balandin, Nanoscale 8, 14608 (2016).
  14. T. Chen, Y. Huang, L. Wei, T. Xu, and Y. Xie, Carbon 203, 130 (2023).
  15. Y.Wu, B. Yang, B. Zong, H. Sun, Z. Shen, and Y. Feng, J. Mater. Chem. 14, 469 (2004).
  16. M. Hiramatsu and M. Hori, Carbon Nanowalls: Synthesis and Emerging Applications, Springer Science & Business Media, Wien (2010).
  17. S. Evlashin, M. Tarkhov, D. Chernodubov, A. Inyushkin, A. Pilevsky, P. Dyakonov, A. Pavlov, N. Suetin, I. Akhatov, and V. Perebeinos, Phys. Rev. Appl. 15, 054057 (2021).
  18. A.M. Mumlyakov, M.V. Shibalov, E.R. Timofeeva, I.V. Trofimov, N.V. Porokhov, S.A. Evlashin, P.A. Nekludova, E.A. Pershina, Yu.V. Anufriev, A.M. Tagachenkov, E.V. Zenova, and M.A. Tarkhov, Carbon 184, 698 (2021).
  19. S. Evlashin, S. Svyakhovskiy, N. Suetin, A. Pilevsky, T. Murzina, N. Novikova, A. Stepanov, A. Egorov, and A. Rakhimov, Optical and IR Absorption of Multilayer Carbon Nanowalls, Carbon 70, 111 (2014).
  20. H. J. Cho, H. Kondo, K. Ishikawa, M. Sekine, M. Hiramatsu, and M. Hori, Carbon 68, 380 (2014).
  21. K. Kobayashi, M. Tanimura, H. Nakai, A. Yoshimura, H. Yoshimura, K. Kojima, and M. Tachibana, J. Appl. Phys. 101, 094306 (2007).
  22. V.A. Krivchenko, S.A. Evlashin, K.V. Mironovich, N. I. Verbitskiy, A. Nefedov, C. W¨oll, A.Ya. Kozmenkova, N.V. Suetin, S.E. Svyakhovskiy, D.V. Vyalikh, A.T. Rakhimov, A.V. Egorov, and L.V. Yashina, Sci. Rep. 3, 1 (2013).
  23. M. Hiramatsu, S. Mitsuguchi, T. Horibe, H. Kondo, M. Hori, and H. Kano, Jpn. J. Appl. Phys. 52, 01AK03 (2013).
  24. W. Wei and Y.H. Hu, J. Mater. Chem. A 5, 24126 (2017).
  25. V.A. Krivchenko, D.M. Itkis, S.A. Evlashin, D.A. Semenenko, E.A. Goodilin, A.T. Rakhimov, A. S. Stepanov, N.V. Suetin, A.A. Pilevsky, and P.V. Voronin, Carbon 50, 1438 (2012).
  26. Y. Zhang, L. Tan, H. Yin, G. Zhang, and J. Liu, Experimental Measurements of Thermal Performances of Carbon Nanomaterial with Vertical Structures in Hotspot Heat Dissipation, in 2019 IEEE 19th International Conference on Nanotechnology (IEEENANO), Institute of Electrical and Electronics Engineers, Macao, China (2019), p. 370.
  27. A. Achour, B. E. Belkerk, K. Ait Aissa, S. Vizireanu, E. Gautron, M. Carette, P.-Y. Jouan, G. Dinescu, L. Le Brizoual, Y. Scudeller, and M.-A. Djouadi, Appl. Phys. Lett. 102, 061903 (2013).
  28. A. Bilusic, S. Gradecak, A. Tonejc, A. Tonejc, J. Lasjaunias, and A. Smontara, Synth. Met. 121, 1121 (2001).
  29. J. Lasjaunias, M. Saint-Paul, A. Biluˇsi'c, A. Smontara, S. Gradeˇcak, A. Tonejc, A. Tonejc, and N. Kitamura, Phys. Rev. B 66, 014302 (2002).
  30. S.A. Evlashin, F. S. Fedorov, P.V. Dyakonov et al. (Collaboration), J. Phys. Chem. Lett. 11, 4859 (2020).
  31. A.M. Mumlyakov, M.V. Shibalov, I.V. Trofimov, M.G. Verkholetov, A.P. Orlov, G.D. Diudbin, S.A. Evlashin, P.A. Nekludova, Yu.V. Anufriev, A.M. Tagachenkov, E.V. Zenova, and M.A. Tarkhov, J. Alloys Compd. 858, 157713 (2021).
  32. P. Dyakonov, K. Mironovich, S. Svyakhovskiy, O. Voloshina, S. Dagesyan, A. Panchishin, N. Suetin, V. Bagratashvili, P. Timashev, E. Shirshin, and S. Evlashin, Sci. Rep. 7, 1 (2017).
  33. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).
  34. D.A. Chernodoubov and A.V. Inyushkin, Rev. Sci. Instrum. 90(2), 024904 (2019).
  35. J. Alvarez-Quintana and J. Rodriguez-Viejo, Sensors and Actuators A: Physical 142, 232 (2008).
  36. D.A. Chernodubov, I.O. Maiboroda, M. L. Zanaveskin, and A.V. Inyushkin, Phys. Solid State 62, 722 (2020).
  37. L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalh˜aes- Paniago, and M.A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006).
  38. C. Dames, Annual Review of Heat Transfer 16, 7 (2013).
  39. M.A. Panzer, M. Shandalov, J.A. Rowlette, Y. Oshima, Y.W. Chen, P.C. McIntyre, and K.E. Goodson, IEEE Electron Device Letters 30, 1269 (2009).
  40. M.T. Barako, A. Sood, C. Zhang, J. Wang, T. Kodama, M. Asheghi, X. Zheng, P.V. Braun, and K.E. Goodson, Nano Lett. 16, 2754 (2016).
  41. D. L. Nika, A. S. Askerov, and A.A. Balandin, Nano Lett. 12, 3238 (2012).
  42. G.A. Slack, Phys. Rev. 127, 694 (1962).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук