Tunneling Mechanism for Changing the Motion Direction of a Pulsating Ratchet. Temperature Effect

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A pulsating ratchet with a spatially periodic double-well potential profile undergoing shift fluctuations for half a period is considered. The motion direction in such a ratchet is determined by the probability of overcoming which of the barriers surrounding the shallow potential well is greater. At relatively high temperatures, in accordance with the Arrhenius law, the probabilities of overcoming the barriers are determined by their heights, and at temperatures close to absolute zero, when the ratchet moves according to the tunnel mechanism, the barrier shapes are also important. Therefore, for narrow high and low wide barriers, the overcoming mechanism may turn out to be different and, moreover, dependent on temperature. As a result, a temperature-induced change in the direction of the ratchet motion is possible. A simple interpolation theory is presented to illustrate this effect. Simple criteria are formulated for the shape of the potential relief, using which one can experimentally observe motion reversal.

About the authors

V. M. Rozenbaum

Belarusian State University;Dalian University of Technology

Email: vik-roz@mail.ru
220050, Minsk, Belarus;116024, Dalian, People’s Republic of China

I. V. Shapochkina

Belarusian State University;Dalian University of Technology

Email: vik-roz@mail.ru
220050, Minsk, Belarus;116024, Dalian, People’s Republic of China

L. I. Trakhtenberg

Semenov Institute of Chemical Physics, Russian Academy of Sciences;Moscow State University

Author for correspondence.
Email: vik-roz@mail.ru
119991, Moscow, Russia;119991, Moscow, Russia

References

  1. P. Reimann, M. Grifoni, and P. H¨anggi, Phys. Rev. Lett. 79, 10 (1997).
  2. P. Reimann, Phys. Rep. 361, 57 (2002).
  3. P. H¨anggi and F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009).
  4. V. M. Rozenbaum, T. Ye. Korochkova, I. V. Shapochkina, and L. I. Trakhtenberg, Phys. Rev. E 104, 014133 (2021).
  5. Ю. В. Гуляев, А. С. Бугаев, В. М. Розенбаум, Л. И. Трахтенберг, Успехи физических наук 190, 337 (2020)
  6. Yu. V. Gulyaev, A. S. Bugaev, V. M. Rozenbaum, and L. I. Trakhtenberg, Phys.- Uspekhi 63, 311 (2020).
  7. V. M. Rozenbaum, I. V. Shapochkina, Y. Teranishi, and L. I. Trakhtenberg, Phys. Rev. E 100, 022115 (2019).
  8. R. D. Astumian and M. Bier, Phys. Rev. Lett. 72, 1766 (1994).
  9. В. М. Розенбаум, И. В. Шапочкина, Л. И. Трахтенберг, Успехи физических наук 189, 529 (2019)
  10. V. M. Rozenbaum, I. V. Shapochkina, and L. I. Trakhtenberg, Phys.-Uspekhi 62, 496 (2019).
  11. J. A. Fornes, Principles of Brownian and Molecular Motors, Springer, Cham (2021).
  12. D. Dan, M. C. Mahato, and A. M. Jayannavar, Phys. Rev. E 63, 056307 (2001).
  13. B. Q. Ai, H. Z. Xie, and L. G. Liu, Eur. Phys. J. B 47, 109 (2005).
  14. В. М. Розенбаум, ЖЭТФ 137, 740 (2010).
  15. V. M. Rozenbaum, T. Ye. Korochkova, A. A. Chernova, and M. L. Dekhtyar, Phys. Rev. E 83, 051120 (2011).
  16. H. Linke, T. E. Humphrey, A. L¨ofgren, A. O. Sushkov, R. Newbury, R. P. Taylor, and P. Omling, Science 286, 2314 (1999).
  17. H. Linke, T. E. Humphrey, P. E. Lindelof, A. Lofgren, R. Newbury, P. Omling, A. O. Sushkov, R. P. Taylor, and H. Xu, Appl. Phys. A 75, 237 (2002).
  18. В. М. Розенбаум, Письма в ЖЭТФ 79, 475 (2004).
  19. Yu. A. Makhnovskii, V. M. Rozenbaum, D.-Y. Yang, S. H. Lin, and T. Y. Tsong, Phys. Rev. E 69, 021102 (2004).
  20. V. M. Rozenbaum, D.-Y. Yang, S. H. Lin, and T. Y. Tsong, J. Phys. Chem. B 108, 15880 (2004).
  21. P. H¨anggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
  22. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика. Нерелятивистская теория, Наука, М. (1989)
  23. L. D. Landau and E. M. Lifshitz, Quantum mechanics. Non-relativistic theory, Pergamon Press, Oxford (1965).
  24. В. И. Гольданский, Докл. АН СССР 124, 1261 (1959).
  25. В. И. Гольданский, Докл. АН СССР 127, 1037 (1959).
  26. В. И. Гольданский, Л. И. Трахтенберг, В. Н. Флеров, Туннельные явления в химической физике, Наука, М. (1986)
  27. V. I. Goldanskii, L. I. Trakhtenberg, and V. N. Fleurov, Tunneling phenomena in chemical physics, Gordon and Breach Science Publishers, N.Y. (1989).
  28. L. I. Trakhtenberg, V. L. Klochikhin, and S. Ya. Pshezhetskii, Chem. Phys. 69, 121 (1982).
  29. Е. М. Лифшиц, Л. П. Питаевский, Физическая кинетика, Наука, М. (1979).
  30. В. М. Розенбаум, И. В. Шапочкина, Ё. Тераниши, Л. И. Трахтенберг, Письма в ЖЭТФ 107, 525 (2018)
  31. V. M. Rozenbaum, I. V. Shapochkina, Y. Teranishi, and L. I. Trakhtenberg, JETP Lett. 107, 506 (2018).
  32. R. D. Astumian and P. Hanggi, Phys. Today 55(11), 33 (2002).
  33. V. M. Rozenbaum, O. Ye. Vovchenko, and T. Ye. Korochkova, Phys. Rev. E 77, 061111 (2008).
  34. L. Gammaitoni, P. H¨anggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998).
  35. R. A. Marcus, J. Chem. Phys. 20, 359 (1952).
  36. R. A. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964).
  37. R. R. Dogonadze, A. M. Kuznetzov, and V. G. Levich, Electrochim. Acta 13, 1025 (1968).
  38. A. M. Kuznetsov, Charge Transfer in Physics, Chemistry and Biology, Gordon and Breach, N.Y. (1995).
  39. G. K. Ivanov, M. A. Kozhushner, and L. I. Trakhtenberg, J. Chem. Phys. 113, 1992 (2000).
  40. А. И. Ларкин, Н. Овчинников, Письма в ЖЭТФ 37, 322 (1983).
  41. A. J. Leggett, Prog. Theor. Phys. Suppl. 69, 80 (1980).
  42. A. O. Calderia and A. J. Leggett, Phys. Rev. Lett. 46, 21l (1981).
  43. A. J. Leggett, Phys. Rev. B 30, 1208 (1984).
  44. А. И. Ларкин, Н. Овчинников, ЖЭТФ 86, 719 (1984).
  45. O. Kedem, B. Lau, M. A. Ratnera, and E. A. Weiss, PNAS 114, 8698 (2017).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук