Evolution of the Electronic Properties of SrFe1 − x − y − zAlxMnyCozO3 Solid Solutions Depending on the Composition and the Degree of Localization of Electronic States

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The genesis of the electronic spectrum in SrFe1 − xAlxO3, SrFe1 − xMnxO3, SrFe1 − xCoxO3, SrFe1 − 2xAlxCoxO3, and SrFe1 − y − zMnyCozO3 cubic solid solutions of strontium ferrite, where 0x0.15">0x0.15 and 0y">0yz0.125">z0.125, is studied in the coherent potential approximation. The inclusion of electron correlations on 3d atoms makes it possible to reproduce the experimental content tendencies in the variation of the electronic and magnetic properties. It is shown that codoping of ferrite with cobalt and aluminum effectively increases the concentration of electron carriers and their degree of localization in SrFe1 − x − 0.15AlxCo0.15O3, which is of interest in the development of oxide thermoelectrics. Due to a relatively large contribution from delocalized states at the Fermi level, SrFe1 − y  zMnyCozO3 solid solutions with y=z=0.10.12">y=z=0.10.12 are promising electrode materials.

About the authors

V. M. Zaynullina

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences;M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: veronika@ihim.uran.ru
Yekaterinburg, 620990 Russia;Yekaterinburg, 620108 Russia

M. A. Korotin

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: michael.korotin@imp.uran.ru
Yekaterinburg, 620108 Russia

V. L. Kozhevnikov

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: kozhevnikov@ihim.uran.ru
Yekaterinburg, 620990 Russia

References

  1. R. J.D. Tilley, Perovskites. Structure-property relationships, Jonh Wiley & Sons, Chichester (2016), p. 327.
  2. J. B. Goodenough, Localized to itinerant electronic Transition in perovskite oxides, Springer-Verlag, Berlin, N.Y. (2001), p. 239.
  3. Т.А. Шайхулов, А.Р. Сафин, К.Л. Станкевич, А.В. Матасов, М.П. Темирязева, Д.А. Винник, В. Е. Живулин, С.А. Никитов, Письма в ЖЭТФ 117, 620 (2023).
  4. A. Lebon, P. Adler, C. Bernhard, A.V. Boris, A.V. Pimenov, A. Maljuk, C.T. Lin, C. Ulrich, and B. Keimer, Phys. Rev. Lett. 92, 037202 (2004).
  5. Y. Long, Y. Kaneko, Sh. Ishiwata, Y. Taguchi, and Y. Tokura, J. Phys.: Cond. Mat. 23, 245601 (2013).
  6. N. Hayashi, T. Yamamoto, A. Kitada, A. Matsuo, K. Kindo, J. Hester, H. Kageyama, and M. Takano, J. Phys. Soc. Jpn. 82, 113702 (2013).
  7. S. Kamba, V. Goian, V. Skoromets, J. Hejtmanek, V. Bovtun, M. Kempa, F. Borodavka, P. Vanek, A.A. Belik, J.H. Lee, O. Pecherova, and K.M. Rabe, Phys. Rev. B 89, 064308 (2014).
  8. S. Balamurugan, K. Yamaura, A.B. Karki, D.P. Young, M. Arai, and E. Takayama-Muromachi, Phys. Rev. B 74, 172406 (2006).
  9. Y.W. Long, Y. Kaneko, S. Ishiwata, Y. Tokunaga, T. Matsuda, H. Wadati, Y. Tanaka, S. Shin, Y. Tokura, and Y. Taguchi, Phys. Rev. B 86, 064436 (2012).
  10. A. Maignan, Ch. Martin, N. Nguyen, and B. Raveau, Solid State Sci. 3, 57 (2001).
  11. T. Takeda, T. Watanabe, Sh. Komura, and H. Fujii, J. Phys. Soc. Jpn. 56, 731 (1987).
  12. M.V. Patrakeev, V.V. Kharton, Yu.A. Bakhteeva, A.L. Shaula, I.A. Leonidov, V. L. Kozhevnikov, E.N. Naumovich, A.A. Yaremchenko, and F.M. B. Marques, Solid State Sci. 8, 476 (2006).
  13. M. Abbate, G. Zampieri, J. Okamoto, A. Fujimori, S. Kawasaki, and M. Takano, Phys. Rev. B 65, 165120 (2002).
  14. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
  15. L. Hedin and B. I. Lundqvist, J. Phys. Chem. 4, 2064 (1971).
  16. D.D. Sarma, N. Shanthi, S.R. Barman, N. Hamada, H. Sawada, and K. Terakura, Phys. Rev. Lett. 75, 1126 (1995).
  17. Zh. Yang, Zh. Huang, L. Ye, and X. Xie, Phys. Rev. B 60, 15674 (1999).
  18. V. I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzik, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).
  19. Zh. Li, R. Laskowski, T. Iitaka, and T. Tohyama, Phys. Rev. B 85, 134419 (2012).
  20. M. Hoffmann, V. S. Borisov, S. Ostanin, I. Mertig, W. Hergert, and A. Ernst, Phys. Rev. B 92, 094427 (2015).
  21. S. Chowdhury, A. Jana, A.K. Mandal, R. J. Choudhary, and D.M. Phase, ACS Appl. Electron. Mater. 3, 3060 (2021).
  22. H. Wu, W. Tan, Ch. Xiao, D. Huang, K. Deng, and Y. Qian, Solid State Commun. 151, 1616 (2011).
  23. I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. B 53, 7158 (1996).
  24. V.M. Zainullina, M.A. Korotin, and V.L. Kozhevnikov, Prog. Solid State Chem. 60, 100284 (2020).
  25. P. Soven, Phys. Rev. 156, 809 (1967).
  26. М.А. Коротин, Н.А. Скориков, В.М. Зайнуллина, Э. З. Курмаев, А.В. Лукоянов, В.И. Анисимов, Письма в ЖЭТФ 94, 884 (2011).
  27. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
  28. В.М. Зайнуллина, М.А. Коротин, Письма в ЖЭТФ 116, 103 (2022).
  29. М.А. Коротин, Н.А. Скориков, С.Л. Скорняков, А.О. Шориков, В.И. Анисимов, Письма в ЖЭТФ 100, 929 (2014).
  30. M.A. Korotin, N.A. Skorikov, and A.O. Anokhin, Phys. B 526, 14 (2017).
  31. O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).
  32. V. I. Anisimov, D.E. Kondakov, A.V. Kozhevnikov, I.A. Nekrasov, Z.V. Pchelkina, J.W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B 71, 12511 (2005).
  33. J.-S. Kang, H. J. Lee, G. Kim, D.H. Kim, B. Dabrowski, S. Kolesnik, H. Lee, J.-Y. Kim, and B. I. Min, Phys. Rev. B 78, 054434 (2008).
  34. D.H. Kim, H. J. Lee, B. Dabrowski, S. Kolesnik, J. Lee, B. Kim, B. I. Min, and J.-S. Kang, Phys. Rev. B 81, 073101 (2010).
  35. T. Takeda, S. Komura, and N. Watanabe, in Ferrites, ed. by H. Watanabe, S. Iida, and M. Sugimoto, Center for Academic Publ., Tokyo (1981), p. 385.
  36. J. Lee, E. Ahn, Yu-S. Seo, Y. Kim, T.-Y. Jeon, J. Cho, I. Lee, and H. Jeen, Phys. Rev. Appl. 10, 054035 (2018).
  37. А.В. Дмитриев, И.П. Звягин, УФН 180, 821 (2010).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук