Multicomponent Current Sheet of the Magnetopause with an Arbitrary Energy Distribution of Particles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An exact solution to the Maxwell–Vlasov equations has been found for a large class of multicomponent current sheets in collisionless plasma, which describe the spatial structure of the current in the magnetopause and consistent inhomogeneous anisotropic momentum distributions of particles with different effective temperatures. Devised sheets allow a nonmonotonic variation of the magnetic field and can have asymmetric, multihump, and sign-alternating profiles of the current density. Profiles of the current of different particle populations can have different scales, contain countercurrents, and be spatially shifted with respect to each other. The model under consideration is applicable to qualitatively describe a magnetopause separating a magnetosphere of a planet from a solar wind or separating regions of the solar wind with different parameters of the plasma and magnetic field.

About the authors

A. A. Nechaev

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences

Email: a.nechaev@ipfran.ru
603950, Nizhny Novgorod, Russia

Vl. V. Kocharovskiy

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences

Email: a.nechaev@ipfran.ru
603950, Nizhny Novgorod, Russia

V. V. Kocharovskiy

Department of Physics and Astronomy, Texas A&M University

Email: a.nechaev@ipfran.ru
TX 77843, College Station, USA

M. A. Garasev

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences

Author for correspondence.
Email: a.nechaev@ipfran.ru
603950, Nizhny Novgorod, Russia

References

  1. A.B. Lotekar, I.Y. Vasko, T. Phan, S.D. Bale, T.A. Bowen, J. Halekas, A.V. Artemyev, Yu.V. Khotyaintsev, and F. S. Mozer, Astrophys. J. 929, 58 (2022).
  2. J. L. Burch and T.D. Phan, Geophys. Res. Lett. 43, 8327 (2016).
  3. R. Nakamura, A. Varsani, K. J. Genestreti et al. (Collaboration), Journal of Geophysical Research: Space Physics 123, 1260 (2018).
  4. C. Norgren, D.B. Graham, Y.V. Khotyaintsev, M. Andr'e, A. Vaivads, M. Hesse, E. Eriksson, P.-A. Lindqvist, B. Lavraud, J. Burch, S. Fuselier, W. Magnes, D. J. Gershman, and C.T. Russell, Journal of Geophysical Research: Space Physics 123, 9222 (2018).
  5. P. Louarn, A. Fedorov, E. Budnik, G. Fruit, J.A. Sauvaud, C.C. Harvey, I. Dandouras, H. R'eme, M.C. Dunlop, and A. Balogh, Geophys. Res. Lett. 31, L19805 (2004).
  6. M.W. Dunlop, M.G.G.T. Taylor, Y.V. Bogdanova et al. (Collaboration), Journal of Geophysical Research: Space Physics 113, A07S19 (2008).
  7. S. Haaland, A. Runov, A. Artemyev, and V. Angelopoulos, Journal of Geophysical Research: Space Physics 124, 3421 (2019).
  8. L. F. Burlaga, N.F. Ness, D.B. Berdichevsky, J. Park, L.K. Jian, A. Szabo, E.C. Stone, and J.D. Richardson, Nat. Astron. 3, 1007 (2019).
  9. S.M. Krimigis, R.B. Decker, E.C. Roelof, M. E. Hill, C.O. Bostrom, K. Dialynas, G. Gloeckler, D.C. Hamilton, E.P. Keath, and L. J. Lanzerotti, Nat. Astron. 3, 997 (2019).
  10. J.D. Richardson, J.W. Belcher, P. Garcia-Galindo, and L. F. Burlaga, Nat. Astron. 3, 1019 (2019).
  11. D.A. Gurnett and W. S. Kurth, Nat. Astron. 3, 1024 (2019).
  12. J.R. Shuster, D. J. Gershman, J.C. Dorelli et al. (Collaboration), Nat. Phys. 17, 1056 (2021).
  13. M.M. Echim and J. F. Lemaire, Phys. Rev. E 72, 036405 (2005).
  14. N. Dorville, G. Belmont, N. Aunai, J. Dargent, and L. Rezeau, Phys. Plasmas 22, 092904 (2015).
  15. S.P. Gary, Theory of space plasma microinstabilities, Cambridge University Press, Cambridge (1993), 184 p.
  16. V.V. Kocharovsky, Vl.V. Kocharovsky, V.Yu. Martyanov, and S.V. Tarasov, Phys.-Uspekhi 59, 1165 (2016).
  17. O. Allanson, F. Wilson, T. Neukirch, Y.-H. Liu, and J.D.B. Hodgson, Geophys. Res. Lett. 44, 8685 (2017).
  18. T. Neukirch, I.Y. Vasko, A.V. Artemyev, and O. Allanson, Astrophys. J. 891, 86 (2020).
  19. E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, Pergamon, Oxford (1981), p. 115.
  20. V.V. Kocharovsky, Vl.V. Kocharovsky, V.Yu. Martyanov, and A.A. Nechaev, Astron. Lett. 45, 551 (2019).
  21. Vl.V. Kocharovsky, V.V. Kocharovsky, and A.A. Nechaev, Dokl. Phys. 66, 9 (2021).
  22. V.V. Kocharovsky, Vl.V. Kocharovsky, V.Yu. Martyanov, and A.A. Nechaev, J. Phys. Conf. Ser. 932, 012019 (2017).
  23. T. Silva, B. Afeyan, and L.O. Silva, Phys. Rev. E 104, 035201 (2021).
  24. A.A. Kuznetsov, V.V. Kocharovskii, Vl.V. Kocharovskii, A.A. Nechaev, and M.A. Garasev, Plasma Phys. Rep. 48, 973 (2022).
  25. K.Yu. Vagin and S.A. Uryupin, Plasma Phys. Rep. 40, 393 (2014).
  26. T.D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N. J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell, and C.P. Ridgers, Plasma Phys. Control. Fusion 57, 113001 (2015).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук