Inverse “Foldover” Resonance in an Yttrium Iron Garnet Film

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nonlinear magnetic resonance is studied in an in-plane magnetized yttrium iron garnet (YIG) film. For YIG films magnetized perpendicular to the plane, the effect referred to as the foldover resonance is well known. It arises because the precession frequency increases with the deviation of the magnetization. When the field is reduced, the frequency of the precession remains resonant because the demagnetizing field decreases with the deviation of the magnetization. The signal disappears when the radio frequency pump power is insufficient to maintain a nonequilibrium state of the system. In the in-plane magnetized yttrium iron garnet film, the precession frequency decreases with an increase in the pump amplitude. Accordingly, the foldover effect arises under an increase in the field. The fundamental difference is that the precession in the latter case should be unstable with respect to the decay into spin wave modes. The deviation angles of magnetization of about 10° are reached, and the rate of decay of the uniform precession into spin waves, which depends on the deviation angle of the magnetization, is measured. This study opens up another way of achieving the magnon density corresponding to the formation of its Bose–Einstein condensate.

About the authors

Yu. M. Bun'kov

Russian Quantum Center

Email: y.bunkov@rqc.ru
143025, Skolkovo, Moscow, Russia

P. M Vetoshko

Russian Quantum Center; Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: y.bunkov@rqc.ru
143025, Skolkovo, Moscow, Russia; 125009, Moscow, Russia

T. R. Safin

Kazan Federal University

Email: y.bunkov@rqc.ru
420008, Kazan, Russia

M. S. Tagirov

Kazan Federal University

Author for correspondence.
Email: y.bunkov@rqc.ru
420008, Kazan, Russia

References

  1. I. S. Tupitsyn, P. C. E. Stamp, and A. L. Burin, Phys. Rev. Lett. 100, 257202 (2008).
  2. P. W. Anderson and H. Suhl, Phys. Rev. 100, 1788 (1955).
  3. Y. Li, V. V. Naletov, O. Klein, J. L. Prieto, M. Mun˜oz, V. Cros, P. Bortolotti, A. Anane, C. Serpico, and G. de Loubens, Phys. Rev. X 9, 041036 (2019).
  4. Yu. K. Fetisov, C. E. Patton, and V. T. Synogach, IEEE Trans. Magn. 35, 4511 (1999).
  5. Yu. M. Bunkov and V. L. Safonov, J. Magn. Magn. Mater. 452, 30 (2018).
  6. Yu. M. Bunkov, A. N. Kuzmichev, T. R. Sa n, P. M. Vetoshko, V. I. Belotelov, and M. S. Tagirov, Sci. Rep. 11, 7673 (2021).
  7. Yu. M. Bunkov and G. E. Volovik, Phys. Rev. Lett. 98, 265302 (2007).
  8. Yu. M. Bunkov and G. E. Volovik J. Low Temp. Phys. 150, 135 (2008).
  9. T. Sato, T. Kunimatsu, K. Izumina, A. Matsubara, M. Kubota, T. Mizusaki, and Yu. M. Bunkov, Phys. Rev. Lett. 101, 055301 (2008).
  10. G. E. Volovik, J. Low Temp. Phys. 153, 135 (2008).
  11. A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskiy, JETP Lett. 39, 469 (1984).
  12. Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskiy, Sov. Phys. JETP 61, 719 (1985).
  13. T. B. Noack, V. I. Vasyuchka, A. Pomyalov, V. S. Lv'ov, A. A. Serga, and B. Hillebrands, Phys. Rev. B 104, L100410 (2021).
  14. P. E. Petrov, P. O. Kapralov, G. A. Knyazev, A. N. Kuzmichev, P. M. Vetoshko, V. I. Belotelov, and Yu. M. Bunkov, Opt. Express 30, 1737 (2022).
  15. G. E. Volovik, JETP Lett. 115, 306 (2022).
  16. S. Murakami and A. Okamoto, J. Phys. Soc. Jpn. 86, 011010 (2017).
  17. G. E. Volovik, JETP Lett. 107, 324 (2018).
  18. Yu. M. Bunkov, P. M. Vetoshko, A. N. Kuzmichev, G. V. Mamin, S. B. Orlinskii, T. R. Sa n, V. I. Belotelov, and M. S. Tagirov, JETP Lett. 111, 62 (2020).
  19. A. N. Kuzmichev, P. M. Vetoshko, G. A. Knyazev, V. I. Belotelov, and Yu. M. Bunkov, JETP Lett 112, 710 (2020).
  20. P. M. Vetoshkoa, G. A. Knyazev, A. N. Kuzmichev, A. A. Kholin, V. I. Belotelov, and Yu. M. Bunkov, JETP Lett. 112, 299 (2020).
  21. Yu. M. Bunkov, JETP Lett. 115, 694 (2022).
  22. Yu. M. Bunkov, "Magnon Bose-Einstein condensation, new results". Proceedings of Conference "Actual problems of magnetic resonance and its applications", Kazan University Pbl. (2011).
  23. Yu. M. Bunkov, JETP 131, 18 (2020).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук