Two-Photon Laser Lithography of Functional Microstructures of Integrated Photonics: Waveguides, Microcavities, and Prism Input/Output Adapters of Optical Radiation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The development and optimization of methods for creating functional elements of micron and sub-micron sizes for photonic integrated circuits is one of the main tasks of nanophotonics. Two-photon laser lithography is actively developing now to form three-dimensional structures with subwave resolution. Results of this development are reported and it is shown that the use of optimized lithography schemes, the spatial filtering of laser beam used, and the introduction of laser dyes into polymer lead to the formation of optically homogeneous high-quality bulk microstructures with characteristic features down to 300 nm with necessary functional properties. The capabilities of optimized two-photon laser lithography are demonstrated by examples of ring microcavities and optical waveguides with prism input/output adapters located above a substrate. Optical losses upon the coupling of 405-nm radiation into a waveguide using a printed prism adapter was no more than 1.25 dB.

Sobre autores

A. Maydykovskiy

Faculty of Physics, Moscow State University

Email: anton@shg.ru
119991, Moscow, Russia

D. Apostolov

Faculty of Physics, Moscow State University

Email: anton@shg.ru
119991, Moscow, Russia

E. Mamonov

Faculty of Physics, Moscow State University; Faculty of Physics, National Research University Higher School of Economics

Email: anton@shg.ru
119991, Moscow, Russia; 109028, Moscow, Russia

D. Kopylov

Faculty of Physics, Moscow State University

Email: anton@shg.ru
119991, Moscow, Russia

S. Dagesyan

Faculty of Physics, Moscow State University

Email: anton@shg.ru
119991, Moscow, Russia

T. Murzina

Faculty of Physics, Moscow State University; Faculty of Physics, National Research University Higher School of Economics

Autor responsável pela correspondência
Email: anton@shg.ru
119991, Moscow, Russia; 109028, Moscow, Russia

Bibliografia

  1. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001).
  2. S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett., 22(2), 132 (1997).
  3. I. I. Shishkin, M.V. Rybin, K.B. Samusev, M. F. Limonov, R.V. Kiyan, B.N. Chichkov, Y. S. Kivshar, and P.A. Belov, JETP Lett. 99(9), 531 (2014).
  4. A.G. Vitukhnovskya, R.D. Zvagelskya, D.A. Kolymagina, A.V. Pisarenkoa, and D.A. Chubicha, Bull. Russ. Acad. Sci.: Phys. 84(7), 927 (2020).
  5. H. Gao, G. F.R. Chen, P. Xing, J.W. Choi, H.Y. Low, and D.T.H. Tan, Adv. Opt. Mater. 8(18), 2000613 (2020).
  6. P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, W. Freude, and C. Koos, Nature Photon. 12, 241 (2018).
  7. A. Maydykovskiy, E. Mamonov, N. Mitetelo, S. Soria, and T. Murzina, JETP Lett. 115(5), 261 (2022).
  8. S.P. Vyatchanin, M. L. Gorodetskii, and V. S. ll'chenko, Journal of Applied Spectroscopy 56, 182 (1992).
  9. A.A. Savchenkov, W. Liang, A.B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, Opt. Lett. 34(9), 1318 (2009).
  10. X. Wang, Q. Liao, Q. Kong, Y. Zhang, Z. Xu, X. Lu, and H. Fu, Angewandte Chemie International Edition 53(23), 5863 (2014).
  11. A.P. Tarasov, A. S. Lavrikov, L.A. Zadorozhnaya, and V.M. Kanevsky, JETP Lett. 115(9), 502 (2022).
  12. K.H. Li, Y. F. Cheung,W.Y. Fu, and H.W. Choi, Appl. Phys. Lett. 119(10), 101106 (2021).
  13. M. Fujita, A. Sakai, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 5(3), 673 (1999).
  14. F. Vollmer and S. Arnold, Nat. Methods 5(7), 591 (2008).
  15. G. Guan, S. Arnold, and M. V. Otugen, AIAA J. 44(10), 2385 (2006).
  16. S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, Adv. Opt. Mater. 7(20), 1900602 (2019).
  17. D. Venkatakrishnarao, M. A. Mohiddon, N. Chandrasekhar, and R. Chandrasekar, Adv. Opt. Mater. 3(8), 1035 (2015).
  18. I. Staude, M. Decker, M. J. Ventura, C. Jagadish, D.N. Neshev, M. Gu, and Y. S. Kivshar, Adv. Mater. 25(9), 1260 (2013).
  19. D.A. Kopylov, M.N. Esaulkov, I. I. Kuritsyn, A.O. Mavritskiy, B. E. Perminov, A.V. Konyashchenko, T.V. Murzina, and A. I. Maydykovskiy, Laser Phys. Lett. 15(4), 045001 (2018).
  20. G.O. Dias, O. Lecarme, J. Cordeiro, E. Picard, and D. Peyrade, Microelectronic Engineering 257, 111751 (2022).
  21. F. Dumur, Eur. Polym. J. 163, 110962 (2022).
  22. N.B. Tomazio, L.D. Boni, and C.R. Mendonca, Sci. Rep. 7(1), 1 (2017).
  23. R.M.R. Adao, T. L. Alves, C. Maibohm, B. Romeira, and J. B. Nieder, Opt. Express 30(6), 9623 (2022).
  24. S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhanga, and Y. Zhang, Adv. Opt. Mater. 7(20), 1900602 (2019).
  25. L. Cheng, S. Mao, Z. Li, Y. Han, and H. Y. Fu, Micromachines 11(7), 666 (2020).
  26. X. Chen, C. Li, C.K.Y. Fung, S.M.G. Lo, and H.K. Tsang, IEEE Photonics Technol. Lett. 22(15), 1156 (2010).
  27. D. Taillaert, F.V. Laere, M. Ayre, W. Bogaerts, D.V. Thourhout, P. Bienstman, and R. Baets, Jpn. J. Appl. Phys. 45(8A), 6071 (2006).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023