Logarithmic Relaxation of the Nonequilibrium State of the Charge Density Wave in TbTe3 and HoTe3 Compounds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The measurements of electronic transport including the dynamic properties of the charge density wave (CDW) in the quasi-two-dimensional compound HoTe3 have been performed. The effects of the slow relaxation of the nonequilibrium state of the CDW during isothermal exposure in the zero current mode, previously observed in TbTe3, have been discovered and studied. A significant increase in the exposure time made it possible to clearly demonstrate that the relaxation is logarithmic. Relaxation features were studied in different temperature and time ranges. The data obtained indicate the glassy behavior of the CDW pinning centers in rare-earth tritellurides.

About the authors

A. V Frolov

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Email: fralek@mail.ru
125009, Moscow, Russia

A. P Orlov

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences; Institute of Nanotechnology of Microelectronics of Russian Academy of Sciences

Email: fralek@mail.ru
125009, Moscow, Russia; 115487, Moscow, Russia

D. M Voropaev

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Search University)

Email: fralek@mail.ru
125009, Moscow, Russia; 141701, Dolgoprudnyi, Moscow region, Russia

A. Khadzh-azzem

Universté Grenoble Alpes, CNRS, Grenoble INP, Institut Néel

Email: fralek@mail.ru
38042, Grenoble, France

A. A Sinchenko

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Email: fralek@mail.ru
125009, Moscow, Russia

P. Monso

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Author for correspondence.
Email: fralek@mail.ru
125009, Moscow, Russia

References

  1. G. Gru�ner, Rev. Mod. Phys. 60, 1129 (1988).
  2. P. Monceau, Adv. Phys. 61, 325 (2012).
  3. X. Zhu, Y. Cao, J. Zhang, E. W. Plummer, and J. Guo, Proceedings of the National Academy of Sciences 112, 2367 (2015).
  4. D. A. Zocco, J. J. Hamlin, K. Grube, J.-H. Chu, H.-H. Kuo, I. R. Fisher, and M. B. Maple, Phys. Rev. B 91, 205114 (2015).
  5. J. J. Hamlin, D. A. Zocco, T. A. Sayles, M. B. Maple, J. H. Chu, and I. R. Fisher, Phys. Rev. Lett. 102, 177002 (2009).
  6. E. DiMasi, M. C. Aronson, J. F. Mans eld, B. Foran, and S. Lee, Phys. Rev. B 52, 14516 (1995).
  7. N.Ru, C. L. Condron, G. Y. Margulis, K. Y. Shin, J. Laverock, S. B. Dugdale, M. F. Toney, and I. R. Fisher, Phys. Rev. B 77, 035114 (2008).
  8. Y. Iyeiri, T. Okumura, C. Michioka, and K. Suzuki, Phys. Rev. B 67, 144417 (2003).
  9. N.Ru, J.-H. Chu, and I. R. Fisher, Phys. Rev. B 78, 012410 (2008).
  10. E. A. Nowadnick, S. Johnston, B. Moritz, R. T. Scalettar, and T. P. Devereaux, Phys. Rev. Lett. 109, 246404 (2012).
  11. B. F. Hu, B. Cheng, R. H. Yuan, T. Dong, and N. L. Wang, Phys. Rev. B 90, 085105 (2014).
  12. A. A. Sinchenko, P. Lejay, and P. Monceau, Phys. Rev. B 85, 241104 (2012).
  13. A. Sinchenko, P. Lejay, O. Leynaud, and P. Monceau, Solid State Commun. 188, 67 (2014).
  14. A. A. Sinchenko, P. Lejay, O. Leynaud, and P. Monceau, Phys. Rev. B 93, 235141 (2016).
  15. A. V. Frolov, A. P. Orlov, A. A. Sinchenko, and P. Monceau, JETP Lett. 109, 203 (2019).
  16. A. V. Frolov, A. P. Orlov, A. Hadj-Azzem, P. Lejay, A. A. Sinchenko, and P. Monceau, Phys. Rev. B 101, 155144 (2020).
  17. A. V. Frolov, A. P. Orlov, D. M. Voropaev, A. Hadj-Azzem, A. A. Sinchenko, and P. Monceau, Appl. Phys. Lett. 118, 253102 (2021).
  18. A. Frolov, A. Orlov, D. Voropaev, V. Shakhunov, A. Sinchenko, and P. Monceau, in 2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Xi'an, China, IEEE (2021), p. 457.
  19. A. Banerjee, Y. Feng, D. M. Silevitch, J. Wang, J. C. Lang, H.-H. Kuo, I. R. Fisher, and T. F. Rosenbaum, Phys. Rev. B 87, 155131 (2013).
  20. A. V. Frolov, A. P. Orlov, P. D. Grigoriev, V. N. Zverev, A. A. Sinchenko, and P. Monceau, JETP Lett. 107, 488 (2018).
  21. V. E. Minakova, A. M. Nikitina, and S. V. Zaitsev-Zotov, JETP Lett. 110, 62 (2019).
  22. V. E. Minakova, A. M. Nikitina, and S. V. Zaitsev-Zotov, JETP Lett. 112, 346 (2020).
  23. M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).
  24. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
  25. A. Vaknin, Z. Ovadyahu, and M. Pollak, Phys. Rev. Lett. 84, 3402 (2000).
  26. E. B. Brauns, M. L. Madaras, R. S. Coleman, C. J. Murphy, and M. A. Berg, Phys. Rev. Lett. 88, 158101 (2002).
  27. K. Bu�ntemeyer, H. Lu�then, and M. B�ottger, Planta 204, 515 (1998).
  28. G. Buzs'aki and K. Mizuseki, Nat. Rev. Neurosci. 15, 264 (2014).
  29. V. S. Dotsenko, Phys.-Uspekhi 36, 455 (1993).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук