New Objects in Scattering Theory with Symmetries

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider 1D quantum scattering problem for a Hamiltonian with symmetries. We show that the proper treatment of symmetries in the spirit of homological algebra leads to new objects, generalizing the well-known T- and K-matrices. Homological treatment implies that old objects and new ones are to be combined in a differential. This differential arises from homotopy transfer of induced interaction and symmetries on solutions of free equations of motion. Therefore, old and new objects satisfy remarkable quadratic equations. We construct an explicit example in SUSY QM on a circle demonstrating nontriviality of the above relation.

Sobre autores

A. Losev

Wu Wen-Tsun Key Lab of Mathematics, Chinese Academy of Sciences, 230026, Hefei, People’s Republic of China; National Research University Higher School of Economics, 119048, Moscow, Russia

Email: aslosev2@yandex.ru

T. Sulimov

Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, 191023, St. Petersburg, Russia

Autor responsável pela correspondência
Email: optimus260@gmail.com

Bibliografia

  1. J.R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, John Wiley and Sons, Inc., N. Y. (1972), ch. 3 and 14 (section e).
  2. R.G. Newton, Scattering Theory of Waves and Particles, Springer, Berlin, Heidelberg (1982), � 11.3.2.
  3. A. Losev, TQFT, homological algebra and elements of K. Saito's theory of Primitive form: an attempt of mathematical text written by mathematical physicist, in Primitive Forms and Related Subjects-Kavli IPMU 2014, Mathematical Society of Japan (2019), p. 269; e-Print: 2301.01390.
  4. A. S. Arvanitakis, O. Hohm, C. Hull, and V. Lekeu, Fortsch. Phys. 70(2-3), 2200003 (2022); doi: 10.1002/prop.202200003; arXiv:2007.07942 [hep-th].
  5. F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995); doi: 10.1016/0370-1573(94)00080-M; arXiv:hep-th/9405029 [hep-th].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023